期刊文献+

动态贝叶斯网络一种自适应的局部抽样粒子滤波算法 被引量:1

Adaptive particle filtering for dynamic Bayesian networks inference based on local sample method
下载PDF
导出
摘要 针对传统自适应粒子滤波(APF)对于动态贝叶斯网络推理中高维的问题,提出动态贝叶斯网络一种自适应的局部抽样粒子滤波算法(LSAPF)。LSAPF算法将BK算法分团的思想引入到粒子抽样中,利用策略相关性和局部模型的弱交互性为指导对动态贝叶斯网络进行分割,以降低抽样规模和抽样的状态空间;进而对局部模型用自适应粒子滤波算法进行近似推理,并以粒子的因式积形式近似系统的状态信度。实验结果表明,该算法能很好地兼顾推理精度和推理时间,其性能优于普通PF算法;与APF算法相比,在不增加推理误差的情况下推理时间也有较大的提高。 This paper proposed a local sample adaptive particle filtering (LSAPF)to resolve the high dimension problem of traditional adaptive particle filter for dynamic Bayesian networks inference.Based on particle sampling method,introduced the LSAPF algorithm the clusters idea of BK algorithm to.Acparated dynamic Bayesian networks under the guidance of strategic relevance and weak interaction of local model,so reduced the sampling model scale and state-space of sampling.Then used the APF algorithm to execute approximate inference for local model,represented the reliable state as a factor plot of particles.The experiment result shows that the LSAPF algorithm can make good choice between inference precision and inference time,and performs better than traditional particle filter algorithms.Especially compared with APF algorithm,the algorithm has greatly improved on inference efficiency without increasing inference error.
出处 《计算机应用研究》 CSCD 北大核心 2010年第4期1304-1307,共4页 Application Research of Computers
基金 安徽省自然科学基金资助项目(070412064) 合肥工业大学科学研究发展基(070504F)
关键词 动态贝叶斯网络 局部抽样方法 自适应粒子滤波 粒子滤波 BK算法 dynamic Bayesian networks(DBNs) local sample method adaptive particle filtering particle filter BK algorithm
  • 相关文献

参考文献16

  • 1KUENZER A,SCHLIC C,OHMANN F,et al.An empirical study of dynamic Bayesian networks for user modeling[C]//Proc of UM2001 Workshop on Machine Learning for User Modeling.2001:1-10.
  • 2MIHAJLOVIC V,PETKOVIC M.Dynamic Bayesian networks:a state of the art[R].[S.l.]:University of Twente Document Repository,2001.
  • 3MURPHY K.A brief introduction to graphical models and Bayesian networks[EB/OL].(1998).Http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html.
  • 4BOYEN X,KOLLER D.Tractable inference for complex stochastic processes[C]//Proc of the 14th Annual Conference on Uncertainty in Artificial Intelligence.Morgan Kaufman:[s.n.],1998:33-42.
  • 5MURPHY K.Dynamic Bayesian networks:representation inference and learning[D].Berkeiey:Doctor of Philosophy Dissertation,University of California,2002.
  • 6HUTTER F,BRENDA N G,DEARDEN R.Incremental thin junction trees for dynamic Bayesian networks[R].[S.l.]:Intellectics Group,Darmstadt University of Technology,2004.
  • 7SANJEEV M,MASKELL S.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 8MURPHY K P,MIAN S.Modeling gene expression data using dynamic Bayesian networks[R].Berkeley:Computer Science Division,University of California,1999.
  • 9DOUCET A,GODSILL S,ANDRIEU C.On sequential monte carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000,10(3):197-208.
  • 10胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293

二级参考文献2

共引文献302

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部