期刊文献+

求解互补问题的极大熵差分进化算法 被引量:9

Solving complementarity problem based on maximum-entropy differential evolution algorithm
下载PDF
导出
摘要 针对传统算法无法获得互补问题多个最优解的困难,提出了求解互补问题的差分进化算法。首先利用NCP函数,将互补问题转换为一个非光滑方程组问题,然后用凝聚函数对其进行光滑化,进而把互补问题的求解转换为无约束优化问题,利用差分进化算法对其进行求解。该算法对目标函数的解析性质没有要求且容易实现,数值结果表明了该方法在求解互补问题中的有效性。 Aiming at the difficulty of fact that classical algorithms unable to obtain many solutions to complementarity problem,presented a new method,referred to as differential evolution algorithm.First,reformulated complementarity problem as a system of nonsmooth equations via an NCP-function,given a smoothing approximation to the nonsmooth equations by the aggregate function,furthermore,complementarity problem could be transformed into unconstrained optimization,then using the differential evolution algorithm to solve this problem.The objective function of the algorithm does not require analytical nature and easy to achieve,numerical results show that the method is effective in solving complementarity problem.
出处 《计算机应用研究》 CSCD 北大核心 2010年第4期1308-1310,1338,共4页 Application Research of Computers
基金 陕西省教育厅自然科学研究项目(09JK381)
关键词 差分进化算法 互补问题 极大熵方法 NCP函数 differential evolution algorithm complementarity problem maximum entropy method NCP-function
  • 相关文献

参考文献10

二级参考文献58

  • 1张利彪,周春光,刘小华,马铭,吕英华,马志强.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534-540. 被引量:23
  • 2唐焕文,张立卫,王雪华.一类约束不可微优化问题的极大熵方法[J].计算数学,1993,15(3):268-275. 被引量:75
  • 3李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 4Yurig. Evtushenko and Vitalig. Zhadan, Stable Barrier-projection and Barrier-Newton Methods in Nonlinear Programming. Optimization Methods and Software, 1994, 3: 237~256.
  • 5Yu. Evtushenko. Numerical Optimition Techniques. Optimition Software,Inc. Publications Division, New York, 1985.
  • 6F.Facchinei. Structural and Stability Properties of P0 nonlinear complementarity problems.Mathematics of Operations Research, 1998, 23: 735~745.
  • 7Michael C.Ferris, Daniel Ralph. Projected Gradient Methods for Nonlinear Complementarity Problems via Normal Maps. Recent Advances in Nonsmooth Optimization, 1995, 57~87.
  • 8P.T.Harker, B.Xiao. Newton's method for the nonlinear complementarity problem :a Bdifferentiable equation approach. Mathematical Programming, 1990, 48: 339~357.
  • 9H.Jiang, L.Qi. A new nonsmooth equation approach to nonlinear complementarity problems.SIAM Journal on Control and Optimization, 1993, 35: 178~193.
  • 10C.Kanzow. Nonlinear Complementarity as unconstrained Optimization. J. Optim. Theory Appl.,1996, 88: 139~155.

共引文献29

同被引文献115

引证文献9

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部