期刊文献+

Internet AS幂律建模及其参数估计

Methods to model and estimate scaling exponents of power-law for Internet autonomous system
下载PDF
导出
摘要 为了精确建模Internet自治系统层面上的拓扑结构,提出了基于最小节点度和最大节点度的拓扑幂律模型及其参数估计新算法。针对Internet自治系统层拓扑实际测量数据,利用新算法对拓扑幂律模型中的最小节点度、最大节点度以及标度参数进行计算。实验结果表明,由新算法估计的Internet自治系统层拓扑幂律模型的最小节点度为1,最大节点度随网络规模的增大而增大,标度参数的误差与使用最大然似估计法误差一样均非常小,约为2.25。 In order to accurately model Internet topology on autonomous system(AS) level,a power-law model is improved based on the smallest and the largest node-degree,and a new algorithm of parameters estimation for the power-law model is developed.The smallest and the largest node-degree,the power-law parameter are estimated by the use of a new algorithm for the actual measurement data form Internet autonomous system.The experimental results show that the smallest node-degree is 1,the largest node-degree increases by the network size increasing,and the scaling exponent of power-law is 2.25,the error of the new algorithm is very small as the maximum likelihood estimation.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第11期77-80,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60973129 湖南省科技攻关计划No.07JJ6127 中国博士后科学基金资助项目No.200902324 中国博士后科学基金资助项目No.20070420782 湖南师范大学青年优秀人才培养计划No.ET10902~~
关键词 INTERNET自治系统 幂律模型 最小二乘法 最大似然估计法 Internet autonomous system power-law model least square maximum likelihood estimation
  • 相关文献

参考文献21

  • 1张宇,张宏莉,方滨兴.Internet拓扑建模综述[J].软件学报,2004,15(8):1220-1226. 被引量:64
  • 2Krioukov D,Chung F.Fomenkov M,et al.The workshop on Internet topology(WIT) report[J].ACM SIGCOMM Computer Communication Review,2007,37(1):69-73.
  • 3Donnet B,Friedman T.Internet topology discovery:A survey[J].IEEE Communications Surveys & Tutorials,2007,9(4):56-69.
  • 4Faloutsos M,Faloutsos P.Faloutsos C.On power-law relationship of the Internet topology[J].ACM SIGCOMM Computer Communication Review,1999,29(4):251-262.
  • 5Mahadevan P,Krioukov D.Fomenkov M,et al.Lessons from Three Views of the Internet Topology[DB/OL].http://arxiv.org/PS_cache/cs/pdf/0508/0508033vl.pdf.
  • 6Watts D J,Strogate S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393:440-442.
  • 7Barabasi A L.Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 8Subramanian L,Agarwal S,Rexford J,et al.Characterizing the Internet hierarchy from multiple vantage points[C]//Proceeding of IEEE INFOCOM,2002,2:618-627.
  • 9Newman M E J.Assortative mixing in networks[J].Physical Review Letters,2002,89.
  • 10Shi Z,Mondragon R J.The rich-club phenomenon in the Internet[J].IEEE Communications Letters,2004,8(3):180-182.

二级参考文献27

  • 1Magoni D, Pansiot JJ. Evaluation of Internet topology generators by power law and distance indicators. In: Proc. of the IEEE ICON 2002. Singapore: IEEE, 2002. 401-406.
  • 2Floyd S, Paxson V. Difficulties in simulating the Internet. IEEE/ACM Trans. on Networking, 2001,9(4):392-403.
  • 3Zheng H. Internet worm research [Ph.D. Thesis]. Tianjin: Nankai University, 2003 (in Chinese with English abstract).
  • 4Chalmers RC, Almeroth KC. On the topology of multicast trees. IEEE/ACM Trans. on Networking, 2003,11(1):153-165.
  • 5NMS Home Page. http://www.darpa.mil/ipto/programs/nms/index.htm
  • 6Waxman BM. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications, 1988,6(9):1617-1622.
  • 7Doar MB. A better model for generating test networks. In: Proc. of the GLOBECOM'96. London: IEEE, 1996. 86-93.
  • 8Zegura EW, Calvert KL, Donahoo MJ. A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Trans. on Networking, 1997,5(6):770-783.
  • 9Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. ACM SIGCOMM Computer Communication Review, 1999,29(4):251-262.
  • 10Palmer CR, Steffan JG. Generating network topologies that obey power laws. In: Proc. of the GLOBECOM 2000, Vol 1. San Francisco: IEEE, 2000. 434 -438.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部