期刊文献+

运用空间重构进行时态序列模式演化挖掘 被引量:1

Mining pattern evolution on temporal sequences with space reconstructing
下载PDF
导出
摘要 为了研究时态序列模式演化特征,在给出模式演化片段、模式演化片段集合和频繁模式演化片段定义之后,基于Takens定理,论证了重构空间内模式演化与原空间模式演化之间的等价性关系;给出了重构后的频繁模式演化范型挖掘方法和频繁模式演化范型生成规则的方法;针对周期、混沌和利率三种不同类型的序列数据进行方法的有效性研究。 For discovering the features of pattern evolution on temporal sequences,based on Takens'theorem and the definitions of pattern evolution segments,pattern evolution segment sets and frequent pattern evolution,the equivalent relation between the reconstructed pattern evolution and its originality is demonstrated.Methods for finding typical frequent reconstructed pattern evolution and extracting rules from the pattern evolution are proposed.Comparative experiments on periodic data,chaos data and financial data show that the patterns and rules are meaningful and resultful.
作者 王炳雪
出处 《计算机工程与应用》 CSCD 北大核心 2010年第11期142-144,共3页 Computer Engineering and Applications
基金 上海财经大学211工程三期资助
关键词 时态序列挖掘 模式演化 空间重构 temporal sequence mining pattern evolution time-delay embedding
  • 相关文献

参考文献6

  • 1Mannila H,Toivonen H,Inkeri Verkamo A.Discovery of frequent episodes in event sequences[J].Data Mining and Knowledge Discovery,1997,1 (3):259-289.
  • 2Sternickel K.Automatic pattern recognition in ECG time series[J].Janual of Comput Methods Programs Biomed,2002,68(2):109-115.
  • 3Spiliopoulou M,Baron S.Temporal evolution and local patterns[J].Lecture Notes in Computer Science,2005,3539:190-206.
  • 4Wei Chih-Ping,Chang Yu-Hsiu.Discovering event evolution patterns from document sequences[J].IEEE Transactions on Systems,Man and Cybernetics:Part A,2007,37(2):273-283.
  • 5闾海荣,韩慧,王文渊.基于仿生模式识别思想的时间序列匹配[J].电子学报,2007,35(7):1323-1326. 被引量:5
  • 6Takens F.Detecting strange attractors in turbulence[C]//Proceedings of Dynamical Systems and Turbulence,Warwick,1980:366-381.

二级参考文献7

共引文献4

同被引文献9

  • 1颜镝,宋苏.状态演化模式挖掘在交通流预测中的应用[J].计算机应用,2005,25(3):649-651. 被引量:2
  • 2Das G,Lin K I,Mannila H,et al.Rule discovery from time scries[C]//Agrawal R, Paul E S, Piatetsky-Shapiro G.Proe of the 4th Int Conf of Knowledge Diseovery and Data Mining (KDD98).New York:AAAI Press, 1998:16-22.
  • 3Guimaraes G.The induction of temporal grammatical roles from multivariate time series[C]//Oliveira A L.LNCS 1891:Proc of the 5th Int Colloquium on Grammatical Inference(ICGl 2000). London: Springer-Verlag, 2000:127-140.
  • 4Giles C, Lawrence S, Tsoi A C.Noisy time series prediction using recurrent neural networks and grammatical infcrence[J].Machine Learning,2001,44:161-184.
  • 5Last M, Klein Y, Kandel A.Knowledge discovery in lime series databases[J].IEEE Trans on Systems, Man, and Cybernetics- Part B:Cybernetics,2001,31(1) : 160-169.
  • 6Chan K C,Wong A K,Au W H.A fuzzy approach to partitioning continuous attributes for classification[J].IEEE Trans on Knowledge and Data Engineering,2006,18(5):715-719.
  • 7Gholami E, Borujerdi M M.Fuzzy knowledge discovery from time series data fbr events prediction[C]//Ho T B, Zhou Z H. LNCS:5351:Proc of the 10th Pacific Rim International Conf on Artificial Intelligence:Trends in Artificial Intelligence.Berlin:Springer-Verlag, 2008 .. 646-657.
  • 8Mannila H, Toivonen H,Verkamo A I.Discovery of frequent episodes in event sequences[J].Data Mining and Knowledge Diseovery, 1997,1 (3) :259-289.
  • 9Agrawal R,Mamnila H, Srikant R, et al.Fast discovery of association rules[M]//Fayyad U M, Piatetsky-Shapiro G, Smyth P, et al.Advances in Knowledge Discovery and Data Mining.Menlo Park:AAAI Press, 1996:307-328.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部