期刊文献+

基于Curvelet变换的红外与彩色可见光图像融合算法 被引量:4

Infrared and color visible image fusion algorithm using Curvelet transform
下载PDF
导出
摘要 提出了基于二代Curvelet变换的红外与彩色可见光图像的融合算法。首先对彩色可见光图像进行IV1V2颜色空间变换提取亮度分量,然后对彩色图像的亮度分量和红外图像应用Curvelet变换,对低频系数应用亮度重映射技术后采用加权平均的融合规则,高频系数则采用取大融合规则,再对融合系数应用Curvelet逆变换获得融合图像的亮度分量,最后运用颜色空间逆变换得到融合图像。实验对比表明,相对于对传统融合算法中强度较高的源图像会淹没另一方背景纹理及细节的问题,该算法能有效提高红外光谱信息的充分融合,获得了视觉效果更好、综合指标更优的融合图像。 A novel fusion algorithm based on the second-generation Curvelet transform for infrared image and color visible image is proposed.In this paper,color visible image is converted from RGB color space to IV1V2 and its intensity component is extrated,as well as apply Curvelet transform to the intensity component and infrared image.In the progress,luminance remapping techniques is used to remap curvelet low-frequency coefficient before they are fused in weighted average rule,and picking large value rule is used to fuse high-frequency coefficients,and Curvelet inverse transform is used to fusion coefficients obtaining fused Intensity component.Furthermore,the color space inverse convert is used to obtain fused images.The experiment result shows that the proposed algorithm can overcome the problem in traditional image fusion algorithm,where one source image has higher intensity which may cover the other background texture and detail features.And the algorithm can improve fusion of infrared image spectral information,also has more comprehensive evaluation and better visual effects.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第11期186-189,共4页 Computer Engineering and Applications
基金 国家自然科学基金委-中国工程物理研究院NSAF联合基金资助(No.10676029 No.10776028) 国家自然科学基金No.10676029~~
关键词 图像融合 CURVELET变换 亮度重映射 红外图像 可见光彩色图像 image fusion Curvelet transform luminance remapping infrared image color visible image
  • 相关文献

参考文献8

  • 1Luorc,Yihcc.Multisensor fusion and integration:Approaches,applications,and future research directions[J].IEEE Sensor Journal,2002,2 (2):107-119.
  • 2Starck J L,Candes E J,Donoho D L.The Curvelet transform for image denoising[J].lEEE Transaction on Image Processing,2002,11 (6):670-683.
  • 3Cand'es E,Demanet L,Donoh D,et al.Fast discrete curvelet trans-forms[R/OL].(2005-05).http//:www.curvelet.org.
  • 4Hertzmann A.Jacobs C E.Oliver N,et al.Image analogies[C]//ACM SIGGRAPH 2001,Los Angeles:USA,12-17 August 2001:327-340.
  • 5Burt P J,Kolczynski R J.Enhanced image capture through fusion[C]// Proceedings of 4th International Conference on Computer Vision. Berlin : Germany, 1993 : 173-182.
  • 6张强,郭宝龙.基于Curvelet变换的图像融合算法[J].吉林大学学报(工学版),2007,37(2):458-463. 被引量:11
  • 7Wang Qiang,Yu Daren,Shen Yi.An overview of image fusion met-rics[C]//International Instrumentation and Measurement Technology Conference,Singapore,5-7 May 2009:1-6.
  • 8李逵,狄红卫.一种基于二代Curvelet变换的图像融合新算法[J].暨南大学学报(自然科学与医学版),2008,29(1):11-15. 被引量:4

二级参考文献15

  • 1李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89
  • 2成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2005.
  • 3Pajares G,De La Cruz J M.A wavelet-based image fusion tutorial[J].Pattern Recognition,2004,37(9):1855-1872.
  • 4Gemma P.A general framework for multiresolution image fusion:from pixels to regions[J].Information Fusion,2003,4(4):259-280.
  • 5Candès E J,Donoho D L.Curvelets-a surprisingly effective nonadaptive representation for objects with edges[C]//Saint-Malo,Proceedings,Nashville,2000.
  • 6Candès E J,Donoho D L.New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities[J].Comm on Pure and Appl Math,2004,57:219-266.
  • 7Candès E J,Donoho D L,Ying L.Fast discrete curvelet transforms[Z].Applied and Computational Mathematics,California Institute of Technology,2005.
  • 8Toet A,Ruyven L V,Velaton J.Merging thermal and visual images by a contrast pyramid[J].Opt Engineering,1989,28(7):789-792.
  • 9DeVallois R L,Yund E W,Hepler N.The orientation and direction selectivity of cells in macaque visual cortex[J].Vision Research,1982,22:531-544.
  • 10Boubchir L,Fadili M J.Multivariate statistical modeling of images with the curvelet transform[C]// Eighth International Conference on Signal Processing and Its Applications.Australia,2005.

共引文献13

同被引文献52

  • 1隆刚,肖磊,陈学佺.Curvelet变换在图像处理中的应用综述[J].计算机研究与发展,2005,42(8):1331-1337. 被引量:37
  • 2陈铭生,赖炬铭,孙季丰.基于离散多小波变换的医学图像融合[J].江西科学,2006,24(4):209-212. 被引量:3
  • 3黄光华,倪国强,张彬.基于Land实验的可见红外伪彩色图像融合方法[J].光学技术,2007,33(1):98-101. 被引量:3
  • 4许洪,王向军.多光谱、超光谱成像技术在军事上的应用[J].红外与激光工程,2007,36(1):13-17. 被引量:98
  • 5Waxman A M, Fay D A,Gove A N,et al. Color night vision:fu- sion of intensified visible and thermal IR imagery [ C ] //Pro- ceedings of SPIE. Bellingham,WA,USA:SPIE,1995,2463:58- 68.
  • 6Toet A, Walraven J. New false eolor mapping for image fusion [ J ]. Optical Engineering, 1996,35 ( 3 ) :650-658.
  • 7Waxman A M,Gove A N,Fay D A,et al. Night vision:opponent processing in the fusion of visible and ir inmgery [ J ]. Neural Networks, 1997,10 ( 1 ) : 1-6.
  • 8Waxman A M, Aguilar M, Fay D A, et al. Solid-state color night vision:fusion of low-light visible and thermal infrared imagery [ J]. Lincoln Laboratory Journal, 1998,11 ( 1 ) :41-60.
  • 9Huang G H, Ni G Q, Zhang B. Visual and infrared dual-band false color image fusion method motivated by Land's experiment [J]. Optical Engineering,2007,46(2) :027001-1-10.
  • 10Jang J H,Ra J B. Pseudo-color image fusion based on intensity- hue-saturation color space [ C ]//Proceedings of IEEE Interna- tional Conference on Muhisensor Fusion and Integration for Intel- ligent Systems. Washington DC, USA: IEEE Computer Society, 2008 : 366 -371.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部