期刊文献+

基于曲波域的指纹预处理研究

Fingerprint pre-processing method based on curvelet domain
下载PDF
导出
摘要 研究了一种基于曲波域的指纹图像预处理方法。首先将指纹图像在曲波域中分解,然后用Gabor滤波器来处理粗尺度系数,这些系数是原图像的近似值;同时,在细尺度系数上使用软阈值函数减少沿着脊线方向的噪声。再将重构以后的图像二值化,最后使用基于模板的脉冲耦合神经网络(PCNNs)细化算法细化二值图像,得到指纹的骨架图像。实验结果表明,该方法优于传统的基于Gabor滤波器的指纹图像预处理方法。 A method based on curvelet domain for pre-processing the fingerprint images is proposed.First,the fingerprint image should be decomposed in curvelet domain,than we use Gabor filters on coarse scale coefficients which values are the original image approximation;meanwhile,we use a soft threshold on fine scale coefficients to decrease the effect of noise along the ridge directions.Then,after binarizing the reconstructed fingerprint image,we use a image thinning method based on template-based pulse-coupled neural networks(PCNNs) to thin the binary image,and get the skeleton image.The simulation results show that the proposed fingerprint pre-process method is better than the traditional method which is based on Garbor filters.
出处 《激光与红外》 CAS CSCD 北大核心 2010年第4期442-446,共5页 Laser & Infrared
基金 国家自然科学基金项目(No.60574051)资助
关键词 曲波域 GABOR滤波器 软阈值 模板 PCNNs curvelet domain Gabor filters soft threshold template pulse-coupled neural networks(PCNNs)
  • 相关文献

参考文献11

  • 1D Maltoni,D Maio,A K Jain,et al.Handbook of finger-print recognition[M].Berlin:Springer-Verlag,2009.
  • 2杨小冬,宁新宝,尹义龙.自动指纹识别系统预处理技术及细节特征提取算法的研究[J].南京大学学报(自然科学版),2006,42(4):351-361. 被引量:12
  • 3Hong L,Wan Y,Jain A K.Fingerprint image enhancement:algorithm and performance evaluation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):777-789.
  • 4杨长春.自动指纹识别系统预处理关键技术的研究[J].激光与红外,2007,37(10):1123-1126. 被引量:4
  • 5顾可伟,张玮,马义德,李柏年.基于第二代Curvelet变换的指纹预处理算法[J].兰州大学学报(自然科学版),2009,45(1):115-119. 被引量:2
  • 6Candes E J,Donoho D L.Curvelet-a surprisingly effective non-adaptive representation for objects with edges[C]//C.Rabut A.Cohen,L.L.Schumaker.Curves and Surfaces.Nashville,TN:Vanderbilt University Press,2000:105-120.
  • 7C Emmanuel,D Laurent,D David.Fast discrete curvelet transforms[J].Applied and Computational Mathematics.California Institute of Technology,2005:1-43.
  • 8Johnson L J,Padgett L M.PCNN models and applications[J].Neural Network,1999,10(3):480-498.
  • 9L P Ji,Y Zhang,L F Shang,et al.Binary Fingerprint Image Thinning Using Template-Based PCNNs[J].IEEE Transactions on Systems,Man and Cybernetic,Part B:Cybernetics,2007,8(37):1407-1413.
  • 10N Ratha,S Chen,A Jain.Adaptive flow orientation based on feature extraction in fingerprint images[J].Pattern Recognition,1995,28(11):1657-1672.

二级参考文献38

  • 1陈桂友,孙同景,何斌,朱晓霞.一种指纹图像增强的新方法研究[J].山东大学学报(工学版),2005,35(6):55-58. 被引量:4
  • 2尹德辉,李炳法,唐楷泉.基于小波变换的分块融合算法[J].兰州大学学报(自然科学版),2006,42(2):81-85. 被引量:3
  • 3CANDES E J, DONOHO D L. Curvelets: a surprisingly effective nonadaptive representation for objects with edges[M]//RABUW C, COHEN A, SCHUMAKER L L. Curves and Surfaces Fitting. Nashville, TN: Vanderbilt University Press, 2000: 105-120.
  • 4ZHANG Wei-peng, WANG Qing-ren, TANG Yuanyuan. A wavelet-based method for fingerprint image enhancement[C]//Machine Learning and Cybernetics. Beijing: Proceedings of 2002 International Conference on China, 2002:1 973-1 977.
  • 5MENG Ling-feng, MA Yi-de, DUN Jian-zheng. A new fingerprint image enhancement based on decimation-free directional filter bank[C]. Dubai, United Arab Emirates: IEEE International Conference on Signal Processing and Communications(ICSPC07), 2007.
  • 6CANDES E J. Harmonic analysis of neural networks[J]. Applied and Computational Harmonic Analysis, 1999, 6: 197-218.
  • 7CANDES E J. Ridgelets: theory and applications[D]. Palo Alto, California: Department of Statistics, Stanford University, 1998.
  • 8CANDES E J, DONOHO D L. New tight frames of curvelets and optimal representations of objects with C2 singularities[J]. Commun on Pure and Appl Math, 2004, 57(2): 219-266.
  • 9CANDES E J, DEMANET L, DONOHO D L, et M. Fast discrete curvelet transforms: applied and computational mathematics[R]. California Institute of Technology, 2005: 1-43.
  • 10CANDES E J, Guo F. New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction: image and video coding beyond standars[J]. Signal Process, 2002, 82(11): 1519-1543.

共引文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部