期刊文献+

高效的用户访问预测新算法 被引量:1

Two New Efficient Algorithms to User Access Prediction
下载PDF
导出
摘要 针对基于Web日志挖掘的用户访问预测经典算法的不足,提出了基于Markov链和关联规则的预测算法(MAPA).使用二阶Markov链找到用户下一步或将来可能访问的页面集,生成预测候选集;使用二项关联规则从正向和反向2个角度修正Markov的预测结果,从而生成最后的预测页面.通过引入用户反馈机制,提出了带反馈的Markov预测算法(MPAF),即在预测过程中逐步构造历史预测树,把历史预测信息保存到历史预测树中,并根据用户的反馈来判断预测的正确性.在预测过程中,用二阶Markov预测算法生成预测候选集,再利用历史预测信息动态地调整预测算法,从而生成预测页面.理论分析证明,这2种预测算法具有线性时间复杂度的预测效率.实验结果表明,MAPA和MPAF在预测准确率上平均提高5%和10%. A Markov chain and association rule prediction algorithm (MAPA) is proposed to deal with shortcomings of existing algorithms on user access prediction based on web log mining. The algorithm uses the second-order Markov chain to find the pages which users may visit in either the next step or future, so as to generate the candidate prediction page set. Then the two-item association rules are used to correct the prediction result from the forward and the reverse perspectives to get the last prediction page. The algorithm integrates the advantages of both the Markov chain and the association rule well. A Markov prediction algorithm with feedback (MPAF) is proposed by introducing user feedback mechanism. The algorithm creates a history prediction tree (HPT) step by step during the prediction process, saves the history prediction information into HPT, and determines whether the prediction is correct according the user's feedback. The algorithm generates the candidate prediction page set using the second order Markov prediction algorithm at first, and then the last prediction page is generated by dynamically adjusting the prediction algorithm according the historical prediction information. Theoretical analyses show that both the prediction algorithms have linear time complexity. Experimental results show that the average prediction accuracy of MAPA and MPAF is increased by 5% and 10%, respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第4期28-33,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(50604012)
关键词 数据挖掘 WEB日志挖掘 访问预测 Markov预测 关联规则 data mining Web log mining access prediction Markov prediction association rule
  • 相关文献

参考文献9

  • 1GERY M,HADDAD H.Evaluation of web usage mining approaches for user's next request prediction[C] // Proceedings of the 5 th ACM International Workshop on Web Information and Data Management New York,USA:ACM,2003:74-81.
  • 2ZHANG Zhili,SHI Lei,GUO Shen,et al.Appling association rule to Web prediction[C] // Proceedings of the 1st International Multi-Symposiums on Computer and Computational Sciences.Los Alamitos,CA,USAi IEEE Computer Society,2006,522-527.
  • 3ZUKERMAN I,ALBRECHT D W,NICHOLOSN A E.Predicting user's requests on the WWW[C]// Proceedings of the 7th International Conference on User Modeling.Berlin,Germany:Springer,1999:275-284.
  • 4邢永康,马少平.多Markov链用户浏览预测模型[J].计算机学报,2003,26(11):1510-1517. 被引量:45
  • 5GUNDUZ S,OZSU M T.A web page prediction model based on click-stream tree representation of user behavior[C]//Proceedings of the 9th ACM SIGK-DD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM,2003:535-540.
  • 6OGUDUCU S G,OZSU M T.Incremental click-stream tree model:learning from new users for web page prediction[J].Distributed and Parallel Databases,2006,19(1):5-27.
  • 7HUANG Yinfu,HSU J M.Mining web logs to improve hit ratios of prefetching and caching[J].Knowledge-Based Systems,2008,21(1):62-69.
  • 8SUTHEERA P,HIDEKAZU T.Mining web logs for a personalized recommender system[J].Joho Shori Gakkai Zenkoku Taikai Koen Ronbunshu,2005,67 (3):19-20.
  • 9LIU Haibin,KESELJ V.Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users' future requests[J].Data & Knowledge Engineering,2007,61(2):304-330.

二级参考文献9

  • 1史忠植.知识发现[M].北京:清华大学出版社,2001..
  • 2Lawrence S, Giles C L. Accessibility of information on the Web. Nature, 1999, 400(7): 107-109
  • 3Zuckerman I, Albrecht D, Nicholson A. Predicting user′s requests on the WWW. In: Proceedings of the 7th International Conference on User Modeling, New York: Springer, 1999.275~284
  • 4Borges J, Levene M. Data mining of user navigation patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, CA: Springer-Verlag Press, 1999.92~111
  • 5Sarukkai R. Link prediction and path Analysis using Markov chains. In: Proceedings of the 9th world wide web conference, Amsterdam, Netherlands, 2000. http://www9.org/w9cdrom/68/68.html
  • 6Fu Y, Sandhu K, Shih M Y. Clustering of Web users based on access patterns. In: Proceedings of the 1999 KDD Workshop on Web Mining, San Diego, CA, 1999
  • 7Tak W Y, Matthew J, Hector G M. From user access pattern to dynamic hypertext linking. In: Proceedings of the 5th International World Wide Web conference, Paris France, 1996
  • 8Cooper G F, Herskovitz E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9: 309~347
  • 9Heckerman D,Geiger D,Chickering M. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995, 20: 197~243

共引文献44

同被引文献9

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部