期刊文献+

复杂体制雷达辐射源信号时频原子特征提取方法 被引量:8

A Novel Approach of Feature Extraction for Advanced Radar Emitter Signals Using Time-Frequency Atom Decomposition
下载PDF
导出
摘要 针对复杂体制雷达辐射源信号调制类型识别问题,提出一种新的辐射源信号脉内时频原子特征提取方法(TFAD).该方法首先利用稀疏分解原理和改进差分进化算法将辐射源信号在Ga-bor和Chirplet时频原子库中进行分解,然后利用分解后的首原子能量和Gabor原子中心频率参数分别提取出2个相似比特征和1个频率方差特征作为辐射源信号脉内调制类型的分类特征,最后通过构造有向循环图支持向量机分类器实现雷达辐射源信号的分类识别.与计算复杂度至少为O(nlogn)的分形方法相比,TFAD方法只有O(n)的计算复杂度.采用不同信噪比和多种调制参数的5种辐射源信号进行大量仿真实验,结果表明TFAD方法可获得98.3%的平均正确识别率. A novel approach, called TFAD, is proposed to extract time-frequency atom features to effectively recognize the intra-pulse modulation types of advanced radar emitter signals. The method decomposes emitter signals based on matching pursuit in Gabor and Chirplet atom dictionaries using a modified differential evolution algorithm. Then both the energy of the first decomposed atoms and the frequency parameters of the decomposed Gabor atoms are utilized to extract two correlation ratio features and a frequency variance feature. These features are used as the classification features to recognize different intra-pulse modulations of emitter signals by constructing a directed acyelic graph support vector machine classifier. The computational complexity of TFAD is O(n), while the computational complexity of the fractal approach is O(nlogn). Simulation results conducted on various signal-to-noise ratios and a wide range of modulation parameters of five typical radar emitter signals show that TFAD achieves an average correct recognition rate of 98. 3%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第4期108-113,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60702026) 四川省青年科技基金资助项目(09ZQ026-040)
关键词 雷达辐射源信号 时频原子 特征提取 radar emitter signals time-frequency atom feature extraction
  • 相关文献

参考文献8

  • 1韩俊,何明浩,李胜喜,乐剑.现代雷达辐射源识别技术研究[J].航天电子对抗,2008,24(1):43-45. 被引量:18
  • 2张葛祥,金炜东,胡来招.基于粗集理论的雷达辐射源信号识别[J].西安交通大学学报,2005,39(8):871-875. 被引量:14
  • 3吕铁军,王河,肖先赐.新特征选择方法下的信号调制识别[J].电子与信息学报,2002,24(5):661-666. 被引量:48
  • 4MALLAT S G,ZHANG Z F.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Processing,1993,41(12):3397-3414.
  • 5VITALIY F,STEFAN J.Generalization of strategies in differential evolution[C] // Proceedings of IP-DPS04.Piscataway,NJ,USA:IEEE,2004:165-170.
  • 6NERI N F,TIRRONEN V.On memetic differential evolution frameworks:a study of advantages and limitationsin hybridization[C]// Proceedings of IEEE CEC08.Piscataway,NJ,USA:IEEE,2008:2135 -2142.
  • 7VAPN1K V.The nature of statistical learning theory[M].New York,USA:Springer,1998.
  • 8PLATT J C,CRISTIANINI N,SHAWE T J.Urge margin DAGs for multiclass classification[C] // Proceedings of the 1999 Conference on Advances in Neural Information Processing Systems.Cambridge,MA,USA-MIT Press,2000:547-553.

二级参考文献18

  • 1张葛祥,胡来招,金炜东.基于熵特征的雷达辐射源信号识别[J].电波科学学报,2005,20(4):440-445. 被引量:60
  • 2柳征,姜文利,周一宇.基于小波包变换的辐射源信号识别[J].信号处理,2005,21(5):460-464. 被引量:34
  • 3张葛祥,金炜东,胡来招.基于相像系数的雷达辐射源信号特征选择[J].信号处理,2005,21(6):663-667. 被引量:23
  • 4张国柱,黄可生,姜文利,周一宇.基于信号包络的辐射源细微特征提取方法[J].系统工程与电子技术,2006,28(6):795-797. 被引量:48
  • 5Granger E, Rubin M A, Grossberg S, et al. A what-and-where fusion neural network for recognition and tracking of multiple radar emitters [J]. Neural Networks, 2001, 14(3): 325-344.
  • 6Dai J H, Li Y X. Study on discretization based on rough set theory[A]. Proc of the First Int Conf on Machine Learning and Cybernetics [C]. Piscataway: IEEE Press, 2002. 1 371-1 373.
  • 7Tay F E H, Shen L X. Fault diagnosis based on rough set theory[J]. Engineering Applications of Artificial Intelligence, 2003, 16(1): 39-43.
  • 8Roy A, Pal S K. Fuzzy discretization of feature space for a rough set classifier[J]. Pattern Recognition Letter, 2003, 24(6): 895-902.
  • 9Zhang G X, Hu L Z, Jin W D. Complexity feature extraction of radar emitter signals [A]. Proc of 3rd Asia-Pacific Conf on Environmental Electromagnetics [C]. Piscataway: IEEE Press, 2003. 495-498.
  • 10Zhang G X, Rong H N, Jin W D, et al. Radar emitter signal recognition based on resemblance coefficient features[A]. Lecture Notes in Computer Science, 3066[C]. Berlin: Springer-Verlay GmbH & Company KG, 2004. 665-670.

共引文献75

同被引文献118

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部