期刊文献+

VPRS在轴承故障诊断中的应用 被引量:1

Application of VPRS in Fault Diagnosis of Bearings
下载PDF
导出
摘要 将变精度粗糙集(VPRS)理论引入到轴承的故障诊断中,提出了一种故障决策规则提取方法。首先用等间距法对连续属性进行离散化,然后根据实际,选取不同的β(正确的分类率),利用变精度粗糙集的近似分类质量进行条件属性约简,得到β近似决策规则,最后通过轴承故障实例验证了此方法的有效性和实用性。 VPRS(variable precision rough set) theory is introduced in the fault diagnosis of bearing,and a decision rule acquisition method of fault is presented.Firstly,the equidistant method is utilized to discretize continuous attributes.Then,varying values of β(right ratio of classification) are selected according to the reality,and quality of approximation classification of VPRS is utilized to carry through condition attribute reduction and approximate decision rules about β are obtained.At last,a practical example in the bearing is given to show the validity and practicability of the algorithm.
出处 《轴承》 北大核心 2010年第4期42-46,共5页 Bearing
基金 国家自然科学基金资助项目(50775219)
关键词 滚动轴承 故障诊断 二级齿轮箱 变载荷 变精度粗糙集 近似决策规则 rolling bearing fault diagnosis two-level gearbox variable load VPRS approximate decision rule
  • 相关文献

参考文献10

二级参考文献39

共引文献42

同被引文献23

  • 1李如强,陈进,伍星.基于奇异值分解、模糊聚类和粗糙集理论的旋转机械故障诊断[J].振动与冲击,2005,24(4):46-49. 被引量:9
  • 2潘玉娜,韩捷,李志农.旋转机械诊断中的矢功率谱-模糊C均值聚类方法[J].汽轮机技术,2006,48(3):212-214. 被引量:4
  • 3Z. Pawlak. Rough set[J]. IntematioDal Joumal ofConqmter and Information Science, 1982,11(5):341-356.
  • 4W. Ziarko. Variable precision rough set model [J]. Joumalof Conqmter and System Sciences, 1993,46:44-54.
  • 5Aijun An, Ning Shan, Christine Chan, et al. Discoveringrules for water demand prediction: An enhanced rough-setapproach[J]. Engineering Applications of ArtificialIntelligence, 1996,9(6): 645-653.
  • 6M. Beynon. Reducts within the variable precision roughsets model: A further investigation[J]. European Joumal ofOperational Research, 2011, 124:592-605.
  • 7Shen Lixiang, E.H.T. Francis, Qu Liangsheng, et al. Faultdiagnosis using rough sets theory [J]. Computers inIndustry, 2000, 43:61-72.
  • 8K. Thangavel, A. Pethalakshmi. Dimensionality reductionbased on rough set theory: A review[J]. Applied SoftConqmting, 2009, 9: 1-12.
  • 9Corts, Corinna,Vapnik, et al. Support-vector networks [J].Machine Learning, 1995, 20 (3): 273-297.
  • 10J. A. K. Suykens, J. V andewalle. Least squares supportvector machine classifiers[J]. Neural Proceeding Letter,1999,9(3): 293-300.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部