期刊文献+

海森伯格XY模型的负值度

Negativity of Heisenberg XY Model
下载PDF
导出
摘要 利用一种通用量子纠缠度——负值度(Negativity),研究热平衡时在外加磁场(沿z轴)下两量子比特海森伯格XY模型的热纠缠.当各向异性系数γ足够大时,出现纠缠复苏现象,而且对于一有限温度,可以调节外加磁场来产生纠缠.而对各向同性,当温度比临界温度高时,负值度为零,与外加磁场无关. Using a universal entanglement measure, negativity, we investigate the thermal entanglement of two-qubit Heisenberg XY model in thermal equilibrium at temperature T in the presence of an external magnetic field B. When anisotropy parameter y is large enough there occurs a revival of the entanglement. By adjusting the magnetic field B, one can produce entanglement for any finite T. For isotropic case there is no entanglement above a critical temperature that is independent of the external B field.
作者 刘思平
出处 《襄樊学院学报》 2010年第2期8-11,共4页 Journal of Xiangfan University
基金 湖北省教育厅科学技术研究计划优秀中青年人才项目(Q20082503)
关键词 量子纠缠 海森伯格模型 负值度 热纠缠 Entanglement Heisenberg model Negativity Thermal entanglement
  • 相关文献

参考文献12

  • 1BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolky-Rosen channels[J]. Phys. Rev. Lea., 1993, 70(13): 1895-1899.
  • 2DEUTSCH D, EKERT A, JOZSA R, et al. Quantum privacy amplification and the security of quantum cryptography over noisy channels[J\. Phys. Rev. Lett., 1996, 77(13): 2818-2821.
  • 3SCOTT HILL, WOOTTERS WILLIAM K. Entanglement of a pair of quantum bits[J]. Phys. Rev. Lett., 1997, 78: 5022-5025.
  • 4VEDRAL V, PLENIO M B, RIPPIN M A, et al. Quantifying entanglement[J]. Phys. Rev. Lea., 1997, 78: 2275-2279.
  • 5VIDAL G, WERNER R F. A computable measure of entanglement[J]. Phys.Rev.A., 2002, 65:032314-032317.
  • 6ARNESEN M C, BOSE S, VEDRAL V. Natural Thermal and magnetic Entanglement in 1D Heisenberg Model[J]. Phys. Rev. Lett., 2001, 87:0179014)17904.
  • 7刘思平.海森伯格XXZ模型的热纠缠[J].江汉大学学报(自然科学版),2009,37(3):33-35. 被引量:3
  • 8WANG XIAOGUANG Effects of anisotropy on thermal entanglement[J]. Physics Letters A, 2001, 281(3): 101-104.
  • 9PERES A. Separability criterion for density matrices[J]. Phys.Rev. Lett., 1996, 77: 1413-1415.
  • 10ZYCZKOWSKI K, HORODECKI P, SANPERA A, et al. On the volume of the set of mixed entangled states[J]. Phys. Rev. A, 1998, 58: 883-892.

二级参考文献11

  • 1NIELSEN M A, CHUANG I L. Quantum computation and quantum information[M]. Cambridge: Cambridge University, 2000.
  • 2EKERT A K. Quantum cryptography based on Bell's theoren[J]. Phys Rev Lett, 1991, 67(6): 661-663.
  • 3BENNETT C H, GTLLES B, CLAUDE C, et al. Teleporting an unknown quantum state vta dual classcal and Einstem-podolsky-Rosenchannels[J]. Phys Rev Lett, 1993,70:1895-1899.
  • 4BENNETT C H, DIVINCENZO D E Quantum information and computation[J]. Nature, 2000, 404: 247-255.
  • 5ARNESEN M C, BOSE S, VEDRAL V. Natural thermal and magnetic entanglement in the 1D Heisenberg model[J]. Plays Rev Lett, 2001, 87: 017901-017904.
  • 6WANG X G. Entanglement in the Quantum Heisenberg XY model[J]. Phys Rev A, 2001, 64: 012313-012319.
  • 7PERES A. Separability criterion for density matrices [J]. Phys Rev Lett, 1996, 77: 1413-1415.
  • 8HORODECKI M, HORODECKI P, HORODECKI R. Separability of mixed states: necessary and sufficient condition[J]. Phy Lett A, 1996, 223:1-8.
  • 9VIDAL G, WERNER R F. A computable measure of entanglement[J]. Phys Rev A, 2002, 65:032314-032324.
  • 10ZYCZKOWSKI K, HORODECKI P, SANPERA A, et al. Volume of the set of separable states[J]. Phys Rev A ,1998, 58: 883-892.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部