期刊文献+

高温厌氧细菌混合培养对纤维素酒精生产的提高作用 被引量:1

Enhanced Role of the Co-culture of Thermophilic Anaerobic Bacteria on Cellulosic Ethanol
原文传递
导出
摘要 以高温厌氧细菌热纤维梭菌(Clostridium thermocellum LQRI)和嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus X514和Thermoanaerobacter pseudoethanolicus39E)为对象,以纤维素为微生物利用的底物,分析了LQRI纯培养和LQRI+Thermoanaerobacter混合培养对纤维素降解、酒精生产及终产物分布的影响.结果表明,LQRI+Thermoanaerobacter混合培养的酒精生产能力和纤维素降解率明显高于LQRI纯培养.在混合培养体系中,LQRI+X514的酒精生产能力明显高于LQRI+39E.培养基中无外源酵母粉条件下,LQRI纯培养酒精最高浓度约为11.5mmol/L,LQRI+X514和LQRI+39E混合培养最高酒精浓度分别约为71mmol/L和36.5mmol/L,相同的底物纤维素浓度条件LQRI+X514和LQRI+39E混合培养酒精浓度分别约为LQRI纯培养的5~11倍和3~5倍,纤维素降解率分别都约为LQRI纯培养的1.5~5.0倍;培养基中0.6%外源酵母粉存在条件下,LQRI纯培养酒精最高浓度约为12.9mmol/L,LQRI+X514和LQRI+39E混合培养最高酒精浓度分别约为263.5mmol/L和143.5mmol/L,相同的底物纤维素浓度条件LQRI+X514和LQRI+39E混合培养酒精浓度分别约为LQRI纯培养的8~22倍和8~12倍,纤维素降解率均约为LQRI纯培养的1.1倍.在5%Solka Floc为底物和0.6%外源酵母粉的条件下,LQRI+X514混合培养酒精浓度最高可达到263.5mmol/L,相当于1.2%(质量浓度)的酒精,LQRI+39E约为143mmol/L. Fermentation of the type of cellulosic materials to ethanol was evaluated in batch system of mono-cultures of cellulolytic ethanol producing strains ( Clostridium thermocellum strain LQRI),and co-cultures of LQRI in combination with one of the non-cellulolytic ethanol producing strains ( Thermoanaerobacter pseudoethanolicus strains X514 or Thermoanaerobacter ethanolicus 39E). Results showed that ethanol yields and cellulose degradation abilities were significantly improved by the establishment of co-cultures consisting of LQRI and Thermoanaerobacter ethanolicus partner. A factorial experimental comparison revealed that the co-culture of LQRI + X514 provided the higher ethanol yield than the co-culture of LQRI + 39E,but no significant difference on cellulose degradation by LQRI was found in these co-cultures. In the absence of yeast extract,the highest ethanol concentrations in the co-cultures of LQRI + X514 and LQRI + 39E were about 71 mmol /L and 36. 5 mmol /L,which were approximately 5-11 and 3-5 times higher than that of the mono-culture LQRI under the same concentration substrate,respectively. In the presence of 0. 6% yeast extract,the highest ethanol concentrations in the co-cultures of LQRI + X514 and LQRI + 39E were rapidly improved and reached 263. 5 mmol /L and 143. 5 mmol /L,which were approximately 8-22 and 8-12 times higher than that of the mono-culture LQRI under the same concentrations substrate,respectively. The maximum ethanol concentration reached about 263. 5 mmol /L (1. 2% ) in the co-culture of LQRI + X514 grown on 5% Solka Floc in the presence of 0. 6% yeast extract,while the maximum ethanol concentration reached 143. 5 mmol /L (1. 2% ) in the co-culture of LQRI + 39E grown on 2% Solka Floc in the presence of 0. 6% yeast extract.
作者 方治国
出处 《环境科学》 EI CAS CSCD 北大核心 2010年第4期1059-1065,共7页 Environmental Science
基金 浙江工商大学校科研启动基金项目
关键词 纤维素酒精 高温厌氧菌 混合培养 生物能源 酒精发酵 cellulosic ethanol thermophilic anaerobic bacteria co-culture bioenergy ethanol fermentation
  • 相关文献

参考文献26

  • 1Himmel M E, Ding S Y, Johnson D K, et al. Biomass recalcitrance: Engineering plants and enzymes for biofuels production [ J]. Science, 2007, 315 : 804-807.
  • 2Vertes A A, Inui M, Yukawa H. Implementing biofuels on a global scale [ J]. Nat Biotechnol, 2006, 24 : 761-764.
  • 3Goldemberg J. Ethanol for a sustainable energy future [ J ]. Science, 2007, 315 : 808-810.
  • 4Wheals A E, Basso L C, Alves D M G, et al. Fuel ethanol after 25 years [J]. Trends Biotechnol, 1999, 17: 482-487.
  • 5Lynd L R. Overview and evaluation of fuel ethanol from cellulosic hiomass : Technology, economics, the environment, and policy [ J]. Annu Rev Energy Env, 1996, 21 : 403-465.
  • 6Hamelinek C N, van Hooijdonk G, Faaij A P C. Ethanol from lignocellulosic biomass: teehno-eeonomie performance in short-, middle-and long-term [ J ]. Biomass Bioenerg, 2005, 28: 384-410.
  • 7McKendry P. Energy production from biomass (part 1 ): overview of biomass [ J ]. Bioresource Technol, 2002, 83: 37-46.
  • 8Demain A L, Newcomb M, Wu J H D. Cellulase, clostridia, and ethanol [J].Microbiol Mol Biol R, 2005, 69: 124-154.
  • 9曲音波.纤维素乙醇产业化[J].化学进展,2007,19(7):1098-1108. 被引量:81
  • 10王丹,林建强,张萧,曲音波,余世袁.直接生物转化纤维素类资源生产燃料乙醇的研究进展[J].山东农业大学学报(自然科学版),2002,33(4):525-529. 被引量:57

二级参考文献81

  • 1曲音波,高培基.造纸厂废物发酵生产纤维素酶、酒精和酵母综合工艺的研究进展[J].食品与发酵工业,1993,19(3):62-65. 被引量:34
  • 2刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4):27-32. 被引量:68
  • 3冯骉.工业纤维素酶的测定和比较[J].无锡轻工业学院学报,1994,13(4):323-330. 被引量:15
  • 4姚卫蓉,丁霄霖.β—葡萄糖苷酶的研究概况[J].天津微生物,1996(2):23-30. 被引量:6
  • 5高培基 曲音波 等.纤维素酶解过程的分析和测定[J].生物工程学报,1988,4(4):321-326.
  • 6Roca C,Olsson L.Increasing Ethanol Productivity during Xylose Fermentation by Cell Recycling of Recombinant Saccharomyces cerevisiae[J].Appl.Microbiol.Biotechnol.,2003,60:560-563.
  • 7Dien B S,Cotta M A,Jeffries T W.Bacteria Engineered for Fuel Ethanol Production:Current Status[J].Appl.Mirobiol.Biotechnol.,2003,63:258-266
  • 8Buziol S,Becker J,Baumeister A,et al.Determination of in vivo Kinetics of the Starvation-induced Hxt5 Glucose Transporter of Saccharomyces cerevisiae[J].FEMS Yeast Res.,2002,2:283-291.
  • 9Meinander N Q,Hahn-Hagerdal B.Influence of Cosubstrate Concentration on Xylose Conversion by Recombinant,XYL1-expressing Saccharomyces cerevisiae:A Comparison of Different Sugars and Ethanol as Cosubstrate[J].Appl.Environ.Microbiol.,1999,63:1959-1964.
  • 10Hamacher T,Becker J,Gardonyi M,et al.Characterization of the Xylose-transporting Properties of Yeast Hexose Transporters and Their Influence on Xylose Utilization[J].Microbiology,2002,148:2783-2788

共引文献170

同被引文献17

  • 1Lynd LR, de Brito Cruz CH. Make way for ethanol. Science, 2010, 330 (6008) : 1176-1177.
  • 2Taylor MP, Eley KL, Martin S, et al. Thermophilic ethanologenesis : future prospects for second-generation bioethanol production. Trends in Biotechnology, 2009, 27 ( 7 ) : 398-405.
  • 3Minier M, Goma G. Ethanol production by extractive fermentation. Biotechnology and Bioengineering, 1982, 24 ( 7 ) : 1565-1579.
  • 4Demain AL, Neweomb M, Wu JH. Cellulase, elostridia and ethanol. Microbiology and Molecular Biology Reviews, 2005, 69 ( 1 ) : 124-154.
  • 5Roh Y, Liu SV, Li G, et al. Isolation and characterization of metalreducing Thermoanaerobacter strains from deep subsurface environments of the Piceanee Basin, Colorado. Applied and Environmental Microbiology, 2002, 68 ( 12 ) : 6013-6020.
  • 6Feng X, Mouttaki H, Lin L, et ah Characterization of the central metabolic pathways in Thermoanaerobacter sp. strain X514 via isotopomer-assisted metabolite analysis. Applied and Environmental Microbiology, 2009, 75 ( 15 ) : 5001-5008.
  • 7Xue Y, Xu Y, Liu Y, et al. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacteriu isolated from a hot spring in Tengcong, China. International Journal of Systematic and Evolutionary Microbiology, 2001, 51 ( 4 ) :1335-1341.
  • 8Hemme CL, Fields MW, He Q, et al. Correlation of genomic and physiological traits to biofnel yields in Thermoanaerobacter species. Applied and Environmental Microbiology, 2011, 77 ( 22 ) : 10.
  • 9Lin L, Song H, Tu Q, et al. The Thermoanaerobacter glyeobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. PLoS Genetics, 2011, 7 ( 10 ) : e1002318.
  • 10Lynd LR, Zyl WH, McBride JE, et al. Consolidated bioprocessing of cellulosic biomass : an update. Current Opinion in Biotechnology, 2005, 16 ( 5 ) : 577-583.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部