期刊文献+

恶意模型下隐私保护点积的研究

Research on Privacy Preserving Inner Product for Malicious Model
下载PDF
导出
摘要 由于现存的隐私保护方法大多是在半诚实模型下或针对某一算法,且基于安全多方计算的算法效率较低,因此使用随机正交变换扰乱技术实现恶意模型下垂直分布数据隐私保护点积的计算,该方法能抵制恶意方的共谋,有较好的伸缩性,实现了数据的有效保护。理论证明和实验分析表明该方法的安全性和经过扰乱后数据的有效性。 The existing privacy preserving methods mostly based on semi-honest models and concentrate on a single algorithm,and secure multi-party computation are inefficient,so this paper proposes a privacy-preserving method based on random distribution for vertically partitioned data to compute inner product.The technique is suit for malicious models by choosing random matrix which according with some condition,and protects the inner product between different attributes effectively.Theoretic argument and example analysis demonstrate that our scheme is secure and maintain the validity of data.
作者 姜冬洁
出处 《计算机与现代化》 2010年第4期30-33,共4页 Computer and Modernization
关键词 隐私保护 数据扰乱 恶意模型 点积 垂直分布数据 privacy preserving data disturbation malicious model inner product vertically partitioned data
  • 相关文献

参考文献12

  • 1Agrawal R,Srikant R.Privacy-preserving data mining[C]//Proc.of the 2000 ACM SIGMOD Conference on Management of Data.Dallas,Texas,2000:439-450.
  • 2Lindell Y,Pinkas B.Privacy preserving data mining[C]//Proc.of Advances in Cryptology-CRYPTO'00.Lecture Notes in Computer Science.Springer-Verlag,2000:36-53.
  • 3Vaidya J,Clifton C.Privacy-preserving k-means clustering over vertically partitioned data[C]//Proc.of the 9th ACM SIGKDD Int.Conf.on Knowledge Discovery and Data Mining.Washington,DC,USA,2003:206-215.
  • 4Jha S,Kruger L,McDaniel P.Privacy preserving clustering[C]//Proc.of 10th European Symposium on Research in Computer Security(ESORICS'05).Milan,Italy,2005:397-417.
  • 5Inan Ali,Kaya Selim V,Saygin Yucel.Privacy preserving clustering on horizontally partitioned data[J].Data & Knowledge Engineering,2007,63(3):646-666.
  • 6Oliveira S R M,Zaiane O R.Privacy perserving clustering by data transformation[C]//Proceedings of the 18th Brazilian Symposium on Databases.Manaus,Amazonas,Brazil,2003:304-318.
  • 7Oliveira S R M,Zaiane O R.Achieving privacy preservation when sharing data for clustering[C]//Proceedings of the International Workshop on Secure Data Management in a Connected World(SDM'04)in Conjunction with VLDB 2004.Toronto,Canada,2004:67-82.
  • 8Yang Z,Zhong S,Wright R.Anonymity preserving data collection[C]//Proceedings of ACM KDD 2005.Chicago,2005:334-343.
  • 9Du W,Atallah M J.Privacy-preserving cooperative statistical analysis[C]//Proceedings of the 17th Annual Computer Security Applications Conference.New Orleans,LA,2001:102-110.
  • 10Weisstein E W.Orthogonal Transformation[EB/OL].http://mathworld.wolfram.com/orthogonal transformation.html,2004-01-01.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部