摘要
本文主要利用Krasnosel′skii不动点定理,在适当的条件下,当λ>0和μ>0时,给出下面方程组的一个和多个正解的存在性结果:{x″(t)+λa(t)f(x(t),y(t))=0 t∈[0,1] y″(t)+μb(t)g(x(t),y(t))=0 t∈[0,1] x(0)=x′(1)=y(0)=y′(1)=0本文还推导了Green函数,研究了它的性质,从而得到有关一个和多个正解的存在性结果.
In this paper,using Krasnosel′skii fixed point theorem and under suitable conditions,we present the existence of single and multiple positive solutions to the following systems:{x″(t)+λa(t)f(x(t),y(t))=0 t∈y″(t)+μb(t)g(x(t),y(t))=0 t∈x(0)=x′(1)=y(0)=y′(1)=0where λ0,μ0.In addition,the Green's function is deduced and its properties is considered for establishing a new cone and using fixed point theorem.
出处
《山西师范大学学报(自然科学版)》
2010年第1期28-34,共7页
Journal of Shanxi Normal University(Natural Science Edition)
关键词
正解
非线性微分方程
锥
不动点定理
positive solution
nonlinear ordinary differential systems
cone
fixed point theorem