期刊文献+

关于二阶非线性方程组的正解

Positive Solutions for Second Order Nonlinear Ordinary Differential Systems
下载PDF
导出
摘要 本文主要利用Krasnosel′skii不动点定理,在适当的条件下,当λ>0和μ>0时,给出下面方程组的一个和多个正解的存在性结果:{x″(t)+λa(t)f(x(t),y(t))=0 t∈[0,1] y″(t)+μb(t)g(x(t),y(t))=0 t∈[0,1] x(0)=x′(1)=y(0)=y′(1)=0本文还推导了Green函数,研究了它的性质,从而得到有关一个和多个正解的存在性结果. In this paper,using Krasnosel′skii fixed point theorem and under suitable conditions,we present the existence of single and multiple positive solutions to the following systems:{x″(t)+λa(t)f(x(t),y(t))=0 t∈y″(t)+μb(t)g(x(t),y(t))=0 t∈x(0)=x′(1)=y(0)=y′(1)=0where λ0,μ0.In addition,the Green's function is deduced and its properties is considered for establishing a new cone and using fixed point theorem.
作者 张芳
出处 《山西师范大学学报(自然科学版)》 2010年第1期28-34,共7页 Journal of Shanxi Normal University(Natural Science Edition)
关键词 正解 非线性微分方程 不动点定理 positive solution nonlinear ordinary differential systems cone fixed point theorem
  • 相关文献

参考文献3

  • 1Ru Y, An Y. Positive solutions for 2p- order and 2q-order nonlinear ordinary differential systems[ J]. Math Anal Appl, 2006,324 : 1098 - 1104.
  • 2Fink A M, Gatiea J A. Positive solutions of second order systems of boundary value problem [ J ]. Math Anal Appl, 1993,180:93 - 108.
  • 3Ma R. Multipicity nonnegative solutions of second-order systems of boundary value problems[ J]. Nonlinear Anal, 2000,42:1003 - 1010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部