摘要
一个实的(未必对称)n×n矩阵A称为广义半下定的,如果对任意非零的n维向量x,均有正对角矩阵D=Dx>0,使xTDAx≥0。证明了当A、B分别为m阶,n阶广义半正定矩阵,则AS(D2B)及AS(DB)亦是。同时也讨论了广义半正定矩阵行列式的几个不等式。
A real (perhaps not symmetric) n × n matrix A is said to be generalized positive semidefinite,if for any real nonzero n dimensional vector x ,there exist D=D X,such that x T DAx ≥0.We proved that AS(DB) and AS(DB) are generalized positive semidefinite matrix if A B are generalized positive semidefinite matrix and determinant inequality of generalized positive definite matrices.
出处
《江苏石油化工学院学报》
1998年第4期55-57,共3页
Journal of Jiangsu Institute of Petrochemical Technology
关键词
广义半正定阵
矩阵
Generalized positive
Semidefinite matrix
Kroneeker product