期刊文献+

基于粗糙集特征约减的网络异常检测方法

Performance Optimization for Network Anomaly Detection Using Rough Set Attribution Reduction
下载PDF
导出
摘要 讨论了基于粗糙集特征约简的SVM(支持向量机)异常检测方法,对源自KDD99的实验数据集分别采用SVM和特征约减后SVM进行仿真实验,依据实验结果的比较,说明在网络异常检测中基于特征约减后的SVM和直接采用SVM相比,在保持检测精度不显著降低的同时,前者能够有效的缩短训练时间. Discussed method of network anomaly detectio n using rough-set-attribution-reduction-based SVM.The testing data set from KDD 99 were experimented by respectively using attribution-reduction-based SVM and original SVM.The experiment results showed that,compared with applying SVM directly,to apply attribution-reduction-based SVM in network anomaly detection can reduce effectively training time without obviously losing detection accuracy.
出处 《南通纺织职业技术学院学报》 2010年第1期26-29,共4页 Journal of Nantong Textile Vocational Technology college
基金 国家自然科学基金(编号60804013) 江苏省自然科学基金(编号BK2009067)
关键词 粗糙集 特征约减 支持向量机 异常检测 rough set attribution reduction SVM anomaly detection
  • 相关文献

参考文献9

  • 1张文修,吴伟志.粗糙集理论介绍和研究综述[J].模糊系统与数学,2000,14(4):1-12. 被引量:234
  • 2Zdzis?aw Pawlak.Rough sets[J]. International Journal of Computer & Information Sciences . 1982 (5)
  • 3S.M.Bridges,Rayford M.Vaughn.Fuzzy data mining and genetic algorithms applied to intrusion detection. Proceedings23rd National Information Systems Security Conference . 2000
  • 4KDD Cup1999Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html . 2009
  • 5Chih-Chung Chang,Chih-Jen Lin.LIBSVM:a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm . 2009
  • 6Marcin Kierczak.Rosetta. http://rosetta.lcb.uu.se/general . 2009
  • 7Vapnik VN.The Nature of Statistical Learning Theory. . 1995
  • 8Pawlak Z. International Journal of Computer and Information Sciences . 1982
  • 9Sung A H,Mukkamala S.Identifying important features forintrusion detection using support vector machines and neu-ral networks. Applications and the Internet Technolo-gy . 2003

二级参考文献3

共引文献233

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部