期刊文献+

R-连通空间

R-connected spaces
下载PDF
导出
摘要 利用拓扑空间上的二元关系R定义了R开集,由R开集引入了R邻域、R闭包、R内部、R隔离等概念,由此定义了R连通空间,给出了它的刻画,并研究了它的一些性质. Firstly R-open sets I is defined with the binary relation R on a topological space, then the concepts of R-neighborhood, R-closure, R-interior and R-separation etc.are introduced by R-open sets theory. On the basis of these concepts, R-connected spaces are defined and the characteristics of R-connected spaces are given.Its properties are researched at the same time.
出处 《湖南文理学院学报(自然科学版)》 CAS 2010年第1期10-15,共6页 Journal of Hunan University of Arts and Science(Science and Technology)
关键词 拓扑空间 二元关系 R开集 R闭包 R隔离 R连通空间 topological space binary relation R-open sets R-closure R-separation R-connected spaces
  • 相关文献

参考文献10

  • 1Pawlak Z. Rough sets[J]. Intematinal Journal of Computer and Information Sciences, 1982, 11: 341-356.
  • 2Yao Y Y. Relational interpretations of neighborhood operators and rough set approximation operators[J]. Information Science, 1998, 111: 239-259.
  • 3Slowinski R, Vanderpooten D. Similarity relation as a basis for rough approximations[J]. ICS Research Report, 1995, 53: 249-250.
  • 4Greco S, Matarzzo B, Slowinski R. A new rough set approach to evaluation ofbankrptey. In: Zopounidis C Ed. Operational tools in the management of financial risks[M] Dordrecht: Kluwer Cademic Publishers, 1998: 121-136.
  • 5Liviu Popescu. R-Separated Spaces[J]. Balkan Journal of Geometry and Its Applications, 2001, 6(2): 81-88.
  • 6Tkachuk V V. When do connected spaces have nice connected preimages Proc[J]. Amer Math Soc, 1998, 126: 279-287.
  • 7Fedeli A, Le Donlle A. On good connected preimages[J]. Topology Appl, 2002, 125- 489-496.
  • 8Norman Levine. Strongly Connected Sets in Topology[J]. American Mathematical Monthly, 1965, 72:1098-1100.
  • 9Zheng C Y. On k-connected spaces[J]. Far East J Math Sci, 2007, 25: 37-48.
  • 10Fox R. On topologies for function space[J]. Bull Amer Math Soc, 1998, 51: 429-432.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部