期刊文献+

一种基于神经网络与证据理论融合的P2P业务感知模型

P2P Traffic Identification Model Based on Combination of Neural Networks with Evidence Theory
下载PDF
导出
摘要 提出了一种基于神经网络与证据理论融合的P2P业务感知模型,该模型利用神经网络的非线性逼近能力和自学习能力,获取证据理论所需的基本概率值;并通过证据理论的数据融合明显提高业务感知准确率。实验结果表明,该模型与现行的P2P业务识别方法相比,能够快速、准确、可靠地识别P2P业务类别,实现合法有效的网络管理和控制,对检测网络异常行为与提高网络安全性具有重要意义。 In order to improve the currently Internet traffic identification,we propose a novel P2P traffic identification model based on combination of neural networks with evidence theory.The model using neural networks nonlinear approximation ability and self-learning ability can be more objectively access to basic probability value required for evidence theory identification phrase,and improve greatly the Internet traffic identification accuracy after the re-integration of evidence theory.Contrasted with currently classification approaches,this model can identify Internet traffic with high efficiency and accuracy.It is very important to legal network management and control,anomaly detection and control and network security.
出处 《中国电子科学研究院学报》 2010年第2期148-151,共4页 Journal of China Academy of Electronics and Information Technology
基金 国家高技术研究发展计划863资助项目(2009AA01Z212 2009AA01Z202)
关键词 神经网络 证据理论 业务感知 P2P neutral network evidence theory traffic identification P2P
  • 相关文献

参考文献8

  • 1SUBHAHRATA SEN,OLIVER SPATSCHECK,DONGMEI WAN.Accurate,Scalable in Network Identification of P2P Traffic Using Application Signatures[C]//13th International Conference on World Wide Web,New York,USA,2004:512-521.
  • 2ALOK MADHUKAR,CAREY WILLIAMSON.A Longitudinal Study of P2P Traffic Classification[C]//Proceedings of the 14th IEEE International Symposium on Modeling,Analysis,and Simulation,Washington,USA,2006:179-188.
  • 3MISRA B B,DEHURI S,DASH P K,et al.A Reduced and Comprehensible Polynomial Neural Network for Classification[J].Pattern Recognition Letters,2008,29(12):1 705-1 712.
  • 4FENG DENGCHAO,DIAS PEREIRA J M.Study on Information Fusion Based on Wavelet Neural Network and Evidence Theory in Fault Diagnosis[C]//International Conference on Electronic Measurement and Instruments,Xi'an,China,2007:3 522-3 526.
  • 5RUI SUN,HONGZHONG HUANG,QIANG MIAO.Improved Information Fusion Approach Based on D-S Evidence Theory[J].Journal of Mechanical Science and Technology,2008,22(12):2 417-2 425.
  • 6TONG ZHEN,ZHI MA,YUHUA ZHU,et al.Grain Quality Evaluation Method Based on Combination of BP Neural Networks with D-S Evidence Theory[C]//International Joint Conference on Artificial Intelligence,California,USA,2009:312-315.
  • 7YULAN HU,XIAOJING FAN,HUIJING ZHAO,BING HU.The Research of Target Identification Based on Neural Network and D-S Evidence Theory[C]//International Asia Conference on Informatics in Control,Automation and Robotics,Milan,Italy,2009:345-349.
  • 8BING GONG.An Algorithm of Data Fusion Using Artificial Neural Network and Dempster-Shafer Evidence Theory[C]//International Conference on Control,Automation and Systems Engineering,Zhangjiajie,China,2009:407-410.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部