摘要
设A是代数,φ是A到自身的线性映射,如果对任意的S,T∈A且ST=Z,都有φ(ST)=φ(S)φ(T)成立,则称φ在Z处可乘.本文主要证明以下结果:设H是复数域上的无限维Hilbert空间,φ是Β(H)到自身强算子拓扑连续的线性满射,若φ在恒等算子I处可乘,则φ是空间自同构.
Let A be an algebra . We say that a linear mapping φ from A into itself is a muhiplicative mapping at Z( Z ∈ A) if φ (ST) = φ (S) φ (T) for any S, T∈ A with ST = Z. Let H be an infinite dimensional complex Hilbert space and let φ be a surjective linear map on B (H) . In this paper, we prove that if φ is multiplicative at I and continuous in the stronger operator topology, then φ is an automorphism.
出处
《重庆文理学院学报(自然科学版)》
2010年第2期18-20,24,共4页
Journal of Chongqing University of Arts and Sciences
基金
天水师范学院中青年教师科研资助项目(TSA0935)
关键词
算子代数
在恒等算子处可乘的映射
空间自同构
operator algebra
muhiplicative mappings at unit operator
spatial isomorphism