期刊文献+

广义Logistic回归模型Bayes分析及其在林木存活率预报中的应用 被引量:3

Bayes analysis for generalized Logistic regression model and its application to forestry survival rate
下载PDF
导出
摘要 通过因子分析的方法来解释观测变量的相关性,这种方法是通过引入潜在变量来直接刻画相关性。基于Bayes统计原理、方法用来解决模型的参数估计问题和统计推断,采用Markov Chains Monte Carlo(MCMC)进行统计计算。随机模拟的结果表明所提出的林木存活率预测方法是有效的。最后利用该方法对山西沁水县沁水林场的林木存活率与林分的鼠兔数关系进行了分析。 Factor analysis, which is characterized by the latent variables, is a popular method to interpret the correlation among the observed variables. In this paper, latent constructs are introduced to describe the relationship of the categorical variables. Within the Bayesian framework, parameters estimations and statistical inferences are carried out via a popular technique, i.e., Markov Chains Monte Carlo (MCMC). A simulation study is conducted to assess the proposed method. A pika data set is used to illustrate the real application.
出处 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期47-50,共4页 Journal of Nanjing Forestry University:Natural Sciences Edition
基金 国家自然科学基金项目(10671032)
关键词 广义Logistic回归模型 MCMC Metroplis-Hastings算法 林木存活率 generalized Logistic regression model Markov Chains Monte Carlo Metroplis-Hastings algorithm forestry survival rate
  • 相关文献

参考文献17

  • 1Agresti A.Categorical Data Analysis[M].NewYork:John Wiley and Sons Inc,2002.
  • 2We B C.Exponential Family Nonlinear Models[M].Singapore:Springer,1998.
  • 3熊林平,曹秀堂,徐勇勇,陆健.纵向观测二分类数据的广义线性模型分析[J].第二军医大学学报,1999,20(7):483-485. 被引量:3
  • 4曹铭昌,周广胜,翁恩生.广义模型及分类回归树在物种分布模拟中的应用与比较[J].生态学报,2005,25(8):2031-2040. 被引量:68
  • 5Choi T,Schervish M J,Schmitt K A,et al.A Bayesian approach to Logistic regression model with incomplete information[J].Biometrics,2008,64(2):424-431.
  • 6Bollen K A.Structural equations with latent variable[M].New York:Wiley,1989.[M].New York:Wiley,1989.
  • 7Berger J O.Statistical Decision Theory and Bayesian Analysis[M].New York:SpringerVerlag,1980.
  • 8Gilks W R,Richardson S,Spiegelhalter D[J].Makov Chain Monte Carlo in Practice[C]//London,England:Chapman and Hall,1996.
  • 9Tanner M A,Wong W H.The calculation of posterior distributions by data augmentation (with discussion)[J].Journal of the American Statistical Association,1987,8:528-550.
  • 10Geman S,Geman D.Stochastic relaxation,Gibbs distribution,and the Bayesian restoration of images[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence,1984.

二级参考文献58

共引文献69

同被引文献51

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部