期刊文献+

结合波原子和Cycle Spinning的图像去噪 被引量:2

Image denoising based on wave atoms and cycle spinning
下载PDF
导出
摘要 结合波原子变换和Cycle Spinning的优点,提出一种新的图像去噪算法.由于波原子变换缺乏平移不变性,直接进行系数阈值去噪会在去噪图像边缘产生伪吉普斯现象,导致图像的失真.该算法引入Cycle Spinning技术有效抑制这种视觉失真,对原始含噪图像进行波原子硬阈值去噪.实验结果表明,与单一波原子变换、小波Cycle Spinning方法相比,新算法能够在去除噪声的同时保留边缘,有效抑制了传统去噪方法的伪吉普斯现象,视觉效果也能得到较好的改善.对强噪声级的图像,这种优势更为明显. A new method for image denoising is presented,which colligates the strongpoint of the wave atoms transform and Cycle Spinning.Due to lack of translation invariance of the wave atoms transform,image denoising by coefficient thresholding would lead to Pseudo-Gibbs phenomena.Cycle Spinning is employed to avoid the artifacts.Experimental results show that the method can remove noisy and remaining edges,while Pseudo-Gibbs phenomena are controled efficiently,and can get a better visual effect and PSNR gains compared with the methods like simplex wave atoms or wavelet denoising using Cycle Spinning.And in heavy background noise,this advantage is significant.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2010年第2期300-304,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(60872138)
关键词 图像处理 去噪 小波变换 波原子 平移不变性 循环平移 image processing denoising wavelet transforms wave atoms translation invariance cycle spinning
  • 相关文献

参考文献8

  • 1Candès E J,Demanet L.The Curvelet Representation of Wave Propagators is Optimally Sparse[J].Comm Pure Appl Math,2005,58(11):1472-1528.
  • 2Candès E J,Donoho D L.New Tight Frames of Curvelets and Optimal Representations of Objects with Piecewise-C~2 Singularities[J].Comm Pure Appl Math,2004,57(2):219-266.
  • 3陈利霞,丁宣浩,宋国乡,孙晓丽.基于总变分与小波变换的图像去噪算法[J].西安电子科技大学学报,2008,35(6):1075-1079. 被引量:10
  • 4卢成武.(B_V,E)分解框架下的多尺度图像分解[J].西安电子科技大学学报,2009,36(1):171-176. 被引量:2
  • 5Demanet L.Curvelets,Wave Atoms and Wave Equations[D].California:California Institute of Technology,2006.
  • 6Demanet L,Ying L X.Wave Atoms and Sparsity of Oscillatory Patterns[J].Appl Comput Harmon Anal,2007,23(3):368-387.
  • 7Coifman R R,Donoho D L.Translation-invariant Denoising[C]//Lecture Notes in Statistics:Wavelets and Statistics.New York:Springer-Verlag,1995:125-150.
  • 8Antoine J P,Murenzi R.Two-dimensional Directional Wavelets and the Scale-angle Representation[J].Signal Process,1996,52(3):259-281.

二级参考文献20

  • 1黄倩,张冰尘,王岩飞.一种用各向异性扩散方程抑制SAR相干斑噪声的方法[J].电子与信息学报,2006,28(1):7-11. 被引量:3
  • 2LIU Feng.Diffusion filtering in image processing based on wavelet transform[J].Science in China(Series F),2006,49(4):494-503. 被引量:10
  • 3李敏,冯象初.基于总变分和各向异性扩散方程的图像恢复模型[J].西安电子科技大学学报,2006,33(5):759-762. 被引量:10
  • 4Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms[J]. Physica D,1992, 60(1- 4): 259-268.
  • 5Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations[M]. Boston: American Mathematical Society, 2001.
  • 6Chan T F, Osher S, Shen J. The Digital TV Filter and Nonlinear Denoising[J]. IEEE Trans on Image Processing, 2001, 10(2) : 231-241.
  • 7Perona P, Malik J. Scale-space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Trans on Pattern Anal Machine, Intell,1990, 12(7) : 629-639.
  • 8Fischl B, Schwartz E L. Learned Adaptive Nonlinear Filtering for Nonlinear Diffusion Approximation in Image Processing [C]//Proc13^th Int Conf Pattern Recognition: D. Vienna: IEEE Computer Society, 1996: 276-280.
  • 9Sarti A, Ortiz C, Lochet S, et al. A Geometric Model for 3-D Confocal Image Analysis[J]. IEEE Trans on Biomedical Engineering, 2000, 47(12) : 1 600-1 609.
  • 10Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Physiea D, 1992, 60(1- 4) : 259-268.

共引文献10

同被引文献20

  • 1隆刚,肖磊,陈学佺.Curvelet变换在图像处理中的应用综述[J].计算机研究与发展,2005,42(8):1331-1337. 被引量:37
  • 2刘芳,刘文学,焦李成.基于复小波邻域隐马尔科夫模型的图像去噪[J].电子学报,2005,33(7):1284-1287. 被引量:13
  • 3Chan T F,Osher S,Shen J.The digital TV filter and nonlinear denoising[J].IEEE Transactions on Image Processing,2001,10(2):231-241.
  • 4Vese L,Osher S.Modeling textures with total variation minimization and osdllating patterns in image processing[J].J.Sci.Comput,2003,19(1-3):553-572.
  • 5Weickert J.Anisotropic diffusion in image processing[M].Stuttgart:B.G.Teubner-Verlag,1998.
  • 6Buades A,Morel J M.A non-local algorithm for image denoising[C]//Proceeding of IEEE Computer Society Conference on Pattern Recognition.San Diego,CA,USA,2005:60-65.
  • 7Donoho D L.Adaptive wavelet threshold for image denoising[J].Electronics Letters,2005,41(10):586-587.
  • 8Plonka G.A digital diffusion-reaction type filter for nonlinear denoising[J].Results Math,2009,53(3/4):371-381.
  • 9de O Casaca W C,Boaventura M.A Regularized Nonlinear Diffusion Approach for Texture Image Denoising[C]//Ⅹ Ⅻ Brazilian Symposium on Computer Graphics and Image Processing.2009:1-5.
  • 10Plonka G,Ma J.Nonlinear regularized reaction-diffusion filters for denoising of images with textures[J].IEEE Transactions on Image Processing,2008,17(2):1283-1294.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部