期刊文献+

截集型特征加权模糊C-均值聚类算法 被引量:1

Clustering Algorithm of Sectional Set Feature-weighted Fuzzy C-means
下载PDF
导出
摘要 已有的特征加权型模糊C-均值(WFCM)聚类算法可以有效地提取数据的相关特征,WFCM存在的主要问题是收敛速度慢和对噪声敏感。借助模糊集的截集方式对WFCM的隶属度值进行修改,提出截集型特征加权模糊C-均值聚类算法:SWFCM。SWFCM不仅具有良好的特征提取能力,而且具有收敛速度快和对噪声稳健的优点。实验结果表明,SWFCM的总体性能优于原有的WFCM聚类算法和截集模糊C-均值聚类算法。 Although the clustering algorithm of feature-weighted fuzzy C-means(WFCM)can effecively extract the related features of data, it still has some shortages such as slow convergence and sensitive to noise. The clustering algorithm of sectional set feature-weighted fuzzy C-means (SWFCM)is presented by revising the membership function of WFCM by sectional set. In comparison with WFCM, SWFCM not only can extract the features of data set, but also has the advantages of fast convergence and robust to noise. The experimental results show that SWFCM has super performance over original WFCM clustering algorithm and sectional set fuzzy C-means clustering algorithm.
机构地区 西安邮电学院
出处 《现代电子技术》 2010年第8期123-126,共4页 Modern Electronics Technique
基金 国家自然科学基金资助项目(60572133) 陕西省教育厅专项科研计划项目(09JK721)
关键词 特征加权 稳健聚类 截集 特征提取 feature weighting robust clustering sectional set features extraction
  • 相关文献

参考文献11

  • 1CHIEHYUAN Tsai,CHIU Chuang-cheng.Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm[J].Computational Statistics and Data Analysis,2008,52(10):4658-4672.
  • 2JING L,NG M K,HUANG J Z.An Entropy Weighting K-Means Algorithm for Subspace Clustering of High-dimensional Sparse Data[J].IEEE Trans.on Knowledge and Data Engineering,2007,19(8):1026-1041.
  • 3WANG X Z,WANG Y D,WANG L J.Improving fuzzy feature C-means clustering based on feature-weight learning[J].Pattern Recognition Letters,2004,25 (10):1123-1132.
  • 4FRIGUI H,NASRAOUI O.Unsupervised learning of prototypes and attribute weights[J].Pattern Recognition,2004,37(3):567-581.
  • 5李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 6HUNG W L,YANG M S,CHEN D H.Bootstrapping approach to feature-weight selection in fuzzy C-means algorithms with an application in color image segmentation[J].Pattern Recognition Letters,2008,29(9):1317-1325.
  • 7陈新泉.特征加权的模糊C聚类算法[J].计算机工程与设计,2007,28(22):5329-5333. 被引量:11
  • 8裴继红,范九伦,谢维信.一种新的高效软聚类方法:[J].电子学报,1998,26(2):83-86. 被引量:33
  • 9YANG Miin-shen,WU Kuo-lung.Alpha-cut implemented fuzzy clustering algorithms and switching regressions[J].IEEE Trans.on Systems,Man and Cybernetics,Part B,2008,38(3):588-603.
  • 10LI Y H,DONG M,HUA J.Localized feature selection for clustering[J].Pattern Recognition Letters,2008,29(1):10-18.

二级参考文献20

  • 1武宇文,刘宏,查红彬.基于特征分组加权聚类的表情识别[J].计算机辅助设计与图形学学报,2005,17(11):2394-2401. 被引量:11
  • 2Zhexue Huang,Michael K Ng.A fuzzy k-modes algorithm for clustering categorical data[J].IEEE Trans on Fuzzy Systems,August,1999,7(4):446-452.
  • 3Zhexue Huang.A fast clustering algorithm to cluster very large categorical data sets in data mining[A].Proceedings of the SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery[C].USA:ACM Press,1997.1-8.
  • 4Kononenko I.Estimating attributes:Analysis and extensions of Relief[A].Proceedings of the 7th European Conference on Machine Learning[C].Berlin:Springer,1994.171-182.
  • 5Kira K,Rendell L A.A practical approach to feature selection[A].Proceedings of the 9th International Workshop on Machine Leaning[C].San Francisco,CA:Morgan Kaufmann,1992.249-256.
  • 6Duda R O,Hart P E.Pattern classification and scene analysis[M].New York:John Wiley & Sons,1973.89-91.
  • 7Hathaway R J,Bezdek J C.Nerf C-means:Non-Euclidean relation fuzzy clustering[J].Pattern recognition,1994,27(3):429-437.
  • 8Michalski R S,Stepp R E.Automated construction of classifications:Conceptual clustering versus numerical taxonomy[J].IEEE PAMI,1983,5:396-410.
  • 9Jollois F X,Nadif M.Clustering large categorical data[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg:Springer-Verlag,2002.257-263.
  • 10Tan Pang-Ning,Steinbach M,Kumar V.数据挖掘导论[M].范明,范宏建译.北京:人民邮电出版社,2006.

共引文献155

同被引文献14

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部