摘要
设p是奇素数,证明了:当p=108 s2+1,其中s是奇数,则方程x 3+1=py2无正整数解(x,y).
Let p be an odd prime,elementary method was used to prove that if p=108s2+1,where s is an odd number,then equation x 3+1=py2 has no positive integer solution(x,y).
出处
《温州大学学报(自然科学版)》
2010年第2期16-19,共4页
Journal of Wenzhou University(Natural Science Edition)
关键词
三次不定方程
正整数解
递归数列
Cubic Diophantine Equation
Positive Integer Solution
Recurrent Sequence