期刊文献+

基于RKPM的灵敏度分析及核函数的影响研究

Sensitivity Analysis and Effects of Kernel Functions in Structural Optimization with Reproducing Kernel Particle Method(RKPM)
下载PDF
导出
摘要 基于重构核粒子法的结构优化设计的关键是灵敏度分析。笔者采用罚函数法施加位移边界条件,在结构分析的基础上,利用直接微分法,建立了基于重构核粒子法的结构灵敏度方程,而且其表达形式与结构控制方程非常相似,计算过程容易实现。编写相应的MATLAB程序对两个具有解析解的经典算例进行了灵敏度分析,并详细讨论了节点数、不同核函数及其参数对灵敏度计算精度的影响。计算结果与解析解吻合较好,表明该灵敏度分析方法是正确有效的,同时给出了灵敏度分析过程中合理选择核函数的建议。 Sensitivity analysis is the key to structure optimization design based on Reproducing Kernel Particle Method(RKPM).In this paper,the penalty method is employed for imposing essential boundary conditions,and the structure sensitivity equation is proposed by using Direct Differentiation Method(DDM) on the basis of structural analysis.The expression form of sensitivity equation is so similar to the governing equation that the solving process is easy to implement.The corresponding MATLAB programs are developed,and then the sensitivity analysis of two classical numerical examples with analytical solution are performed successfully.The effects of node number,various kernel functions and their parameters on the displacement sensitivity accuracy are discussed in detail.Computational results are in good agreement with analytical solution and it shows that the present sensitivity analysis method is effective.Finally,advices for choosing of the kernel functions in sensitivity analysis based on RKPM is given.
出处 《机械科学与技术》 CSCD 北大核心 2010年第4期555-560,共6页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金项目(50875223) 湖南省教育厅重点项目(08A079) 湘潭大学校级科研项目(08XZX20)资助
关键词 重构核粒子法 核函数 灵敏度分析 计算精度 reproducing kernel particle method kernel function sensitivity analysis computational accuracy
  • 相关文献

参考文献10

  • 1Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Method in Engineering, 1995,20 : 1081 - 1106.
  • 2Zhang Z Q, Zhou J X, Zhou N, et al. Shape optimization using reproducing kernel particle method and an enriched genetic algorithm [ J ]. Computer Methods in Applied Mechanics and Engineering, 2005,194:4048 - 4070.
  • 3Belytschko T, Lu Y Y, Gu L. Crack propagation by element-free Galerkin methods [ J ]. Engineering Fracture Mechanics, 1995,51 (2) :295 -315.
  • 4Keulen F V, Haftka R T, Kim N H. Review of option for structural design sensitivity analysis part Ⅰ: linear system [J]. Computer Methods in Applied Mechanics and Engineering, 2005,194:3213 - 3243.
  • 5Zhang J P, Gong S G, Huang Y Q, et al. Structural dynamic shape optimization and sensitivity analysis based on RKPM [J]. Structural and Multidisciplinary Optimization, 2008,36 (3) : 307 - 317.
  • 6龚曙光,陈艳萍,黄云清,邱爱红,谢桂兰.基于无网格Galerkin法的灵敏度分析与形状优化[J].机械工程学报,2006,42(6):199-204. 被引量:4
  • 7PanXiaofei,SzeKimYim,ZhangXiong.AN ASSESSMENT OF THE MESHLESS WEIGHTED LEAST-SQUARE METHOD[J].Acta Mechanica Solida Sinica,2004,17(3):270-282. 被引量:3
  • 8杨玉英,李晶.无网格Galerkin方法中权函数的研究[J].塑性工程学报,2005,12(4):5-9. 被引量:12
  • 9张建平,龚曙光,黄云清,聂松辉,陈仁科.基于重构核粒子法的带孔薄板模态分析研究[J].机械科学与技术,2007,26(10):1366-1370. 被引量:1
  • 10Timoshenko S P, Goodier J N. Theory of elasticity [ M]. New York: McGraw Hill,1970.

二级参考文献54

  • 1顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,10(3):321-335. 被引量:32
  • 2熊渊博,龙述尧.用局部Petrov-Galerkin法分析薄板自由振动[J].力学季刊,2004,25(4):577-582. 被引量:6
  • 3龚曙光,黄云清,谢桂兰,邱爱红.基于虚荷载变量的形状优化和灵敏度分析[J].计算力学学报,2005,22(2):183-188. 被引量:7
  • 4Duarte C A, Oden J T. Hp clouds: a h-p meshless method. Numerical methods for Partical Differential Equations. 1996, 12:673~705.
  • 5Liu W K, Jun S, Adee J, et al. Reproducing Kernel Particle methods. Int. J. Numer. Methods. Engrg.1995, 38, 1655-1679.
  • 6Belytschko T, Krongauz Y, Organ D, et al. Meshlee methods: An overview and recent developments.Comput. Methods Appl. Mech. Engrg. , 1996, 139,3-47.
  • 7T Belytschko, Y Y Lu, L Gu, et al. Element-free Galerkin methods for static and dynamoic fracture.Int. J. Solids. Structures, 1995, 32 (17): 2547-2570.
  • 8Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astron. J. 1977, 8 (12):1013-1024.
  • 9B Nayroles, G Touzot, P Villon. Generalizing the finite element method., diffuse approximation and diffuse elements. Comput. Mech. 1992, (10): 307-318.
  • 10Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods. Int. J. Numer. Methods. 1994, 37: 229-256.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部