期刊文献+

电路实验结果的机器评价研究 被引量:2

Research on machine evaluation of circuit experiment results
下载PDF
导出
摘要 提出了实验教学中基于"支持向量回归"的电路实验结果机器评价的新方法,以基本放大电路实验为研究对象。首先通过幅频特性测试仪采样,得到基本放大电路输出特性数据集,然后进行支持向量回归,得到基本放大电路的输出特性曲线的逼近函数,用该函数对实验结果中的相关参数进行测定。实验表明,该方法提高了电路实验结果评价的效度与精度,可在实验教学中应用与推广。 A machine evaluation method of circuit experiment results based on SVM(support vector machine) is presented.The basic amplifier is taken as an experiment object.First,the data set of the output frequency of the basic amplifier is obtained by amplitude frequency characteristics testing equipment to get samples,then the support vector regression is used to get the approach function of the amplifier output characteristics of the basic amplifier,and the function is used to test the correlation parameters of the experiment result.The experimental results show that this method improves the validity and precision of the experimental result evaluation.It is suitable for applying to and popularizing in experiment teaching.
出处 《实验技术与管理》 CAS 北大核心 2010年第3期46-49,共4页 Experimental Technology and Management
基金 2009辽宁省教育厅项目(2009A045)
关键词 支持向量回归 电路实验结果 机器评价 support vector regression circuit experiment result machine evaluation
  • 相关文献

参考文献5

  • 1CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 2VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3孙延风,梁艳春.支持向量机的数据依赖型核函数改进算法[J].吉林大学学报(理学版),2003,41(3):329-333. 被引量:3
  • 4Smola A J.Scholkopf B.A tutorial on support vector regression[EB/OL].http://www.neurocolt.com.
  • 5Suykens J A K,Lukas L,et al.Least squares support vector machine classifiers:a large scale algorithm[EB/OL].http;//www.kernel-machines.org/papers/SuyDooMooVan99.ps.g.

二级参考文献12

  • 1Vapnik V 张学工译.Nature of Statistical Learning Theory(统计学习理论的本质)[M].Beijing(北京):Tsinghua University Press(清华大学出版社),2000..
  • 2Smola A, Scholkopf B. A Tutorial on Support Vector Regression [R]. Technical Report NC2-TR-1998-030,NeuroCOLT2. http://axiom, anu. edu. au/~smola/. 1998.
  • 3Cao Li-juan, Tay Francis E H. Financial Forecasting Using Support Vector Machines[J]. Neural Computing & Applications, 2001, 10(2): 184~192.
  • 4Tay Francis E H, Cao Li-juan. ε-Descending Support Vector Machines for Financial Time Series Forecasting[J]. Neural Processing Letters, 2002, 15(2): 179~195.
  • 5Yang Hai-qin, Chan Lai-wan, King Irwin. Support Vector Machine Regression for Volatile Stock Market Prediction[C]. Proceedings of Intelligent Data Engineering and Automated Learning. Berlin: Springer-Verlag,2002. 319~396.
  • 6Colin Campbell. Kernel Methods: A Survey of Current Techniques[J]. Neurocomputing, 2002, 48: 63~84.
  • 7Amari S, Wu Si. Improving Support Vector Machine Classifiers by Modifying Kernel Functions[J]. Neural Networks, 1999, 12: 783~789.
  • 8Wu Si, Amari S. Conformal Transformation of Kernel Functions: a Data-dependent Way to Improve Support Vector Machine Classifiers[J]. Neural Processing Letters, 2002, 15: 59~67.
  • 9Amari S, Wu Si. An Information-geometrical Method for Improving the Performance of Support Vector Machine Classifiers[C]. Proccedings of International Conference on Artificial Neural Networks'99. London: IEEE conference Publication No. 470, 1999. 85~90.
  • 10Sun Yan-feng. Zhang Wen-li, Gu Xiao-jiong, et al. Optimal Partition Algorithm of RBF Neural Network and Its Applications to Stock Price Prediction[C]. In: Shi Zhong-zhi, He Qing, eds. Proceedings of International Conference on Intelligent Information Technology. Beijing: Posts & Telecom Press, 2002. 448~454.

共引文献171

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部