摘要
The transmission matrix method is used to analyze the influence of incident light on coupled resonators. Two different types of incident light on the same coupled resonator geometry are shown to lead to different system transmission features. The EIT-like phenomenon occurs in the type I case with the transmission being symmetric around the zero-single-pass-phase-shift frequency. In the type Ⅱcase the resonant frequency has a blue shift corresponding to the increasing coupling strength between the two ring resonators. Also, the critical-coupling-like condition exists in the type Ⅱconfiguration to maintain the zero-single pass-phase-shift frequency. The incident light, as well as the geometry, partially determine the mode interference in the coupled ring resonator system.
The transmission matrix method is used to analyze the influence of incident light on coupled resonators. Two different types of incident light on the same coupled resonator geometry are shown to lead to different system transmission features. The EIT-like phenomenon occurs in the type I case with the transmission being symmetric around the zero-single-pass-phase-shift frequency. In the type Ⅱcase the resonant frequency has a blue shift corresponding to the increasing coupling strength between the two ring resonators. Also, the critical-coupling-like condition exists in the type Ⅱconfiguration to maintain the zero-single pass-phase-shift frequency. The incident light, as well as the geometry, partially determine the mode interference in the coupled ring resonator system.
基金
Supported in part by the National Natural Science Foundation of China (No. 60772003)
the National High-Tech Research and Development (863) Program of China (No. 2006AA12Z310)
the Specialized Research Fund for the Doctoral Program of Higher Education of MOE, P.R.C. (No. 200800010037)