期刊文献+

一类具有年龄结构的非自治扩散系统的持久性 被引量:1

Permanence of a non-autonomous system with stage structure and prey dispersion
下载PDF
导出
摘要 提出了一类具有年龄结构和比率依赖的两物种扩散时滞系统,利用标准的比较原理,研究了系统解的正定性和有界性,并获得了系统具有持久性的充分条件. In this work, a class of ratio-dependent two--species predator-prey system with time delays, stage structure and prey diffusion were presented. By utilizing the standard comparison theorem, we studied the positivity and boundedness of solution of system. Moreover, the sufficient condition was deduced for the permanence of this system.
出处 《周口师范学院学报》 CAS 2010年第2期20-24,共5页 Journal of Zhoukou Normal University
基金 周口师范学院青年基金资助项目(No.ZKNUQN200912)
关键词 时滞 扩散 比率依赖 年龄结构 time delaydispersion ratio-dependent stage structure
  • 相关文献

参考文献2

二级参考文献19

  • 1Wang S,动物学杂志,1997年,32卷,1期,38页
  • 2Ma C,动物学杂志,1960年,1期,18页
  • 3W. G. Aiello and H. I. Freedman, A time-delay model of single-species growth with stage structure,Math. Biosci., 1990, 101: 139-153.
  • 4W. G. Aiello, H. 1. Freedman and J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 1992,52(3): 855-869.
  • 5Y. Cao, J. Fan and T. C. Gard, The effects of state-structured population growth model, Nonlin.Anal. Th. Mech. Appl., 1992,16(2): 95-105.
  • 6W. G. Aiello, The existence of nonoscillatory solutions to a generalized, nonautonomous, delay logistic equation, J. Math. Anal. Appl., 1990, 149: 114-123.
  • 7H.I. Freedman and K. Gopalsamy, Global stability in time-delayed single species dynamics, Bull.Math. Biol., 1986, 48: 485-492.
  • 8G. Rosen, Time delays produced by essential nonlinearity in population growth models, Bull. Math.Biol, 1987, 40:253-255.
  • 9P. J. Wangersky and W. J. Cunningham, On time lage in equations of growth, Proc. Natl. Acad.Sci. U.S.A., 1956, 42: 699-702.
  • 10M. E. Fisher and B. S. Goh, Stability results for delayed-recruitment models in population dynamics, J. Math. Biol, 1984, 19:147-156.

共引文献16

同被引文献5

  • 1Xu R,Chen L S.Persistence and stability for two-species ratio-dependent predator-prey system with time delay in a two-patch environment[J].Computers Math.Applic.,2000,40:577-588.
  • 2Xu R,Chaplain M A J,Davidson F A.Persistence and periodicity of a delayed ratio-dependent predator-prey model withstage structure and prey dispersal[J].Applied Mathematics and Computation,2004,159:823-846.
  • 3Arditi R,Ginzburg L R.Coupling in predator-prey dynamics:Ratio-dependence[J].Journal of Theoretical Biology,1989,139:311-326.
  • 4Chen S H,Wang F,Young T.Positive periodic solution of two-prey ratio-dependent predator-prey system with time de-lay in two-patch environment[J].Applied Mathematics and Computation,2004,150:737-748.
  • 5Gaines R E,Mawhin J L.Coincidence Degree and Non-linear Differential Equations[M].New York:Springer,1977.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部