期刊文献+

面向网络文本的中文产品命名实体识别 被引量:4

Web Oriented Chinese Product Named Entity Recognition
下载PDF
导出
摘要 分析电子数码领域的产品命名实体识别的难点和特点,提出了一种基于知识库的最大熵模型的产品命名实体识别方法,实现了从中文网络文本中抽取产品命名实体.实验表明,该系统在电子数码领域中能较好地识别出产品命名实体,对产品命名实体的F1值识别性能达到86.91%. The product named entity in the field of electronic digital is defined. The difficulties and characteristics are analyzed, and then a maximum entropy model based on knowledge base for product named entity recognition on Chinese textual documents is proposed. The experimental results show that the approach can recognize the product named entity in the electronic digital field and achieve the F-measures of 86.91% for the product named entity recognition.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2010年第1期62-66,共5页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金资助项目 编号60673019 60673037 国家863计划项目 编号2002AA117010209
关键词 产品命名实体识别 最大熵模型 产品知识库构建 product named entity recognition maximum entropy model product knowledge base construction
  • 相关文献

参考文献13

  • 1Bikel D, Miller S,Schwartz R,et al. Nymble: a high performance learning name-finder[C]//Proceedings of the 5th Conference on Applied Natural Language Processing. Washington D C: the Association for Computational Linguistics, 1997.
  • 2廖先桃,于海滨,秦兵等.HMM与自动规则提取相结合的中文命名实体识别[C].第二届全国学生计算语言学研讨会论文集,2004.
  • 3Borthwick A E. A maximum entropy approach to named entity recognition[D]. New York: New York University,1999.
  • 4周雅倩,郭以昆,黄萱菁,吴立德.基于最大熵方法的中英文基本名词短语识别[J].计算机研究与发展,2003,40(3):440-446. 被引量:61
  • 5Chieu H L, Ng H T. Named entity recognition with a maximum entropy approach[C]//Proceedings of the 7th Conference on Natural Language Learning at HLT-NAACL. Morristown N J.. the Association for Computational Linguistics,2003.
  • 6Yi E, Lee G G, Park S J, et al. SVM-based biological named entity recognition using minimum edit-distance feature boosted by virtual examples[M]//Lecture Notes in Computer Science. Berlin: Springer,2004.
  • 7Sekine S, Grishman R, Shinnou H. A decision tree method for finding and classifying names in Japanese texts[C]//Proceedings of the 6th Workshop on very Large Corpora. Washingtong D C: the Association for Computational Linguistics , 1998.
  • 8Zhao Jun,Liu Feifan. Product named entity recognition in Chinese text[J].Language Resources and Evaluation, 2008,42 (2) : 197-217.
  • 9Pierre J M. Mining knowledge from text collections using automatically generated metadata[C]//Proceedings of the 4th International Conference on Practical Aspects of Knowledge Management. London.. Springer-Verlag,2002.
  • 10Bick E. A named entity recognizer for Danish[C]// Proceedings of the 4th International Conference on Language Resources and Evaluation, Lisbon, Portugal, 2004.

二级参考文献22

  • 1E F T K Sang, W Daelemans, H Déjean et al. Applying system combination to base noun phrase identification. In: Proc of COLING 2000. Saarbrücken, Germany: Morgan Kaufmann Publishers, 2000. 857~863
  • 2周明 .基于语料库的中文最长名词短语的自动抽取.见:计算语言进展与应用.北京,清华大学出版社,1995. 50-55(Zhou Ming. Corpus-based Chinese maximum noun phrase extraction. In: Computer Linguistic Development and Application(in Chinese). Beijing: Tsinghua University Press, 1995. 50-55)
  • 3K W Church. A stochastic parts program and noun phrase for unrestricted test. In: Proc of the 2nd Conf on Applied Natural Language Processing. Austin, TX, USA: Kluwer Academic Publishers, 1988. 136~143
  • 4S P Abney. Parsing by Chunks. In: R C Berwick, S P Abney eds. PrincipleBased Parsing: Computation and Psycholinguistics. Boston, USA: Kluwer Academic Publishers, 1991. 257~278
  • 5L A Ramshaw, M P Marcus. Text chunking using transformation-based learning. In: Proc of the 3rd Workshop on Very Large Corpora. Kluwer Academic Publishers, 1995. 82~94
  • 6A Ratnaparkhi. Learning to parse natural language with maximum entropy models. Machine Learning, 1999, 34(1/2/3): 151~176
  • 7范晓.静态短语和动态短语. 见:三个平面的语法观 .北京:北京语言文化大学出版社,1996(Fan Xiao. Static phrase and dynamic phrase. In: Grammar Concept from Three Sides(in Chinese). Beijing: Beijing Linguistic Culture College Publisher, 1996)
  • 8R Koeling. Chunking with maximum entropy models. In: Proc of CoNLL 2000. Lisbon, Portagal: Lingustic Association for Computation, 2000
  • 9A L Berger, S A D Pietra, V J D Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 1996, 22(1):39~71
  • 10A L Berger. The improved iterative scaling algorithm: A gentle introduction. School of Computer Science, Carnegin Mellon University, 1997

共引文献64

同被引文献27

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部