期刊文献+

集成最近邻规则的半监督顺序回归算法 被引量:1

Towards semi-supervised ordinal regression with nearest neighbor
下载PDF
导出
摘要 监督型顺序回归算法需要足够多的有标签样本,而在实践中,标注样本的序数耗时耗力,甚至难以完成。为此,提出一种集成最近邻规则的半监督顺序回归算法。基于最近邻,针对每个有标签样本,在无标签数据集选择与其最近似的若干样本赋以相同序数;再由监督型顺序回归算法训练有标签样本和新标注样本。多个数据集的实验结果显示,该方法能显著改善顺序回归性能。另外,引入折扣因子λ评估新标注样本的可信度,并讨论了λ和有标签数据集大小对方法的影响。 The supervised ordinal regression algorithm often requires large amount of labeled samples.However,in the real applications,labeling instances is time and labor consuming,and sometimes even unrealistic.Therefore,a semi-supervised ordinal regression algorithm was proposed,which learned from both the labeled and unlabeled examples.The proposed method began by choosing some instances from unlabeled dataset that are most similar to one labeled example in labeled dataset,and assigning them the corresponding ranker.At this stage,the nearest neighbor rule was packed to score the similarity of two instances.Then,by using supervised ordinal regression,the ranking model was trained from both the labeled and the newly labeled examples.The experimental results show this method produce statistically significant improvements with respect to ranking measures.On the other hand,discount factor λ was introduced for evaluating creditable degree of new labeled examples,and how λ and the size of labeled dataset affected the method performance was discussed.
出处 《计算机应用》 CSCD 北大核心 2010年第4期1022-1025,共4页 journal of Computer Applications
基金 湖南省教育厅科学研究项目(07C133)
关键词 半监督顺序回归 最近邻 无标签样本 折扣因子 semi-supervised ordinal regression nearest neighbor unlabeled sample discount factor
  • 相关文献

参考文献13

  • 1YEHUDA K.Collaborative filtering with temporal dynamics[C]//Proceedings of 15th ACM SIGKDD International Conference on Knowledge Disoovery and Data Mining.New York:ACM Press,2009:447-456.
  • 2CRAMMERK,SINGERK.Pranking with ranking[C]// Proceedings of the 15th Annual Conference on Neural Information Processing Systems.Cambridge,MA:MIT Press,2001:641-647.
  • 3SHASHUA A,LEVIN A.Ranking with large margin principle:Two approaches[C]// Proceedings of 16th Annual Conference on Neural Information Processing Systems.Cambridge,MA:MIT Press,2002:937-944.
  • 4CHU WEI,KEERTHI S S.Support vector ordinal regression[J].Neural Computation,2007,19(3):792-815.
  • 5KRITHARA A,AMINI M R,RENDERS J M,et al.Semi-supervised document classification with a mislabeling error model[C]//Proceedings of the 30th European Conference on IR Research.Heidelberg,Berlin:Springer,2008:370-381.
  • 6肖宇,于剑.基于近邻传播算法的半监督聚类[J].软件学报,2008,19(11):2803-2813. 被引量:165
  • 7彭岩,张道强.半监督典型相关分析算法[J].软件学报,2008,19(11):2822-2832. 被引量:32
  • 8MANGASARIAN O L.Generalized support vector machines[C]//Advances in Large Margin Classifiers.Cambridge,MA:MIT Press,2000:135-146.
  • 9LEE Y J,MANGASARIAN O L.SSVM:A smooth support vector machine[J].Computational Optimization and Applications,2001,20(1):5-22.
  • 10袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81

二级参考文献42

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策,2006,21(4):473-476. 被引量:33
  • 3Borga M, Knutsson H. Canonical correlation analysis in early vision Processing. In: Proc. of the 9th European Symp. on Artificial Neural Networks. 2001. 309-314.
  • 4Gao HB, Hong WX, Cui JX, Xu YH. Optimization of principal component analysis in feature extraction. In: Proc. of the IEEE Int'l Conf. on Mechatronics and Automation. 2007.3128-3132.
  • 5Zheng WM, Zhou XY, Zou CR, Zhao L. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. on Neural Networks, 2006,17(1):233-238.
  • 6Loog M, B. van Ginneken B, Duin RPW. Dimensionality reduction by canonical contextual correlation projections. In: Proc. of the European Conf. on Computer Vision. 2004. 562-573.
  • 7Hel-Or Y. The canonical correlations of color images and their use for demosaicing. Technical Report, HPL-2003-164(R1), HP Labs., 2004.
  • 8Friman O, Carlsson J, Lundberg P, Borga M, Knutsson H. Detection of neural activity in functional MRI using canonical correlation analysis. Magnetic Resonance in Medicine, 2001,45(2):323-330.
  • 9Knutsson H, Borga M, Landelius T. Learning multidimensional signal processing. In: Proc. of the 14th Int'l Conf. on Pattern Recognition. 1998. 1416-1420.
  • 10Nielsen AA. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. on Image Processing, 2002,11 (3):293-305.

共引文献271

同被引文献14

  • 1BLANKERTZ B, MULLER K, KRUSIENSKI D J, et al. The BCI competition Ⅲ: Validating alternative approaches to actual BCI problems[ J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2) : 153 - 159.
  • 2GEORGOPOULOS A P, SCHWARTZ A B, KETTNER R E. Neuronal population coding of movement direction[ J]. Science, 1986, 233(4771): 1416 - 1419.
  • 3MELL/NGER J, SCHALK G, BRAUN C, et al. An MEG-based Brain- Computer Interface (BCI)[J]. Neurolrnage, 2007, 36(3): 581-593.
  • 4WALDERT S, BRAUN C, PREISSL H, et al. Decoding perfolmance for hand movement: EEG vs MEG[ C]// 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society. Wahington DC: IEEE Computer Society, 2007:5346-5348.
  • 5WALDERT S, PREISSL H, DEMANDT E, et al. Hand movement direction decoded from MEG and EEG[J]. Journal of Neuroscience, 2008, 28(4) : 1000 - 1008.
  • 6BRADBERRY T J, RONG F, CONTRERAS-VIDAL J L. Decoding center-out hand velocity from MEG signals during visuomotor adaptation[ J]. NeuroImage, 2009, 47(4) : 1691 - 1700.
  • 7BASU S, BSNERJEE A, MOONEY E R, et al. Active semi-supervision for pariwise constrained clustering[ C]// Proceedings of the SIAM International Conference on Data Mining. Lake Buena Vista: Society for Industrial and Applied Mathematics, 2004:333 -344.
  • 8KLEIN D, KAMVAR S, MANNING C. From instance-level constraints to space-level constraints: Marking the most of prior knowledge in data clustering[ C]// Proceedings of the 19tb International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2002:307 -314.
  • 9WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained K- means clustering with background knowledge[ C]// Proceedings of the 18th International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2001:577 -584.
  • 10BASU S, BILENKO M, MOONEY R J. A probabilistic framework for semi-supervised clustering[ C]// Proceedings of the 10th ACM SIGKDD. New York: ACM, 2004:59-68.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部