期刊文献+

运动、转录因子和线粒体的生物合成 被引量:6

Exercise,Transcription Factors and Mitochondrial Biogenesis
下载PDF
导出
摘要 转录因子高度依赖共激活分子从转录水平调控运动诱导生理性适应过程。骨骼肌线粒体核染色体的交互作用取决于转录因子(NRF-1、NRF-2、PPARa、ERRa、Sp1等)和PGC-1家族成员(PGC-1a、PGC-1β和PRC)的相关影响。这些分子组成非常复杂的信号网络,广泛参与耐力训练诱导的线粒体的生物合成。但是这些蛋白对生成新的线粒体的确切的贡献很难进行区分。这些转录因子的目标基因大部分涉及到线粒体的生物合成和细胞的新陈代谢,其转录调控方式可能为了解运动性能量变化特征的信号通路与线粒体生物合成及其功能之间的关系提供基本框架。 Transcription factors are highly dependent on coactivator molecules to affect transcriptional control of training physiologic adaptation processes. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1,NRF-2,PPARa,ERRa,Sp1,and others) and members of the PGC-1 family of regulated coactivators (PGC-1a,PGC-1β,and PRC). These factors participate in a complex network involved in mitochondrial biogenesis in endurance exercise training. However,the exact contribution of each of these proteins to the generation of new mitochondria is rather difficult to dissect. The majority of transcription factors target genes are involved in mitochondrial biogenesis and metabolism. These transcriptional paradigms may provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that exercise induced energetic properties.
作者 马继政
出处 《四川体育科学》 2010年第1期17-20,共4页 Sichuan Sports Science
关键词 转录因子 运动 线粒体 生物合成 Transcription factors Exercise Mitochondrial Biogenesis
  • 相关文献

参考文献24

  • 1马继政.运动性骨骼肌适应的分子机制[J].首都体育学院学报,2009,21(2):208-212. 被引量:16
  • 2Favier FB, Benoit H, Freyssenet D. Cellular and molecular events controlling skeletal muscle mass in response to altered use[J]. Pflugers Arch, 2008, 456: 587-600.
  • 3Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function[J]. Physiol Rev, 2008, 88: 611-38.
  • 4Alaynick WA. Nuclear receptors, mitochondria and lipid metabolism[J]. Mitochondrion, 2008,8:329-37.
  • 5Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function[J]. Genes Dev,2004,18: 357-368.
  • 6Baar K, Wende AR, Jones TE, et al. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 [J]. FASEB J,2002,16:1879-86.
  • 7Ojuka EO, Jones TE, Hart DH, et al. Raising Ca2 in L6 myotubes mimics effects of exercise on mitochondrial biogenesis in muscle[J]. FASEB J,2003,17: 675-681.
  • 8Bergeron R, Ren JM, Cadman KS, et al Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis[J]. Am J Physiol Endocrinol Metab,2001,281: E 1340~E 1346.
  • 9Ongwijitwat S, Wong-Riley MT. Is nuclear respiratory factor 2 a master transcriptional coordinator for all ten nuclear-encoded cytochrome c oxidase subunits in neurons[J]? Gene, 2005,360: 65~77.
  • 10Ongwijitwat S, Liang HL, Graboyes EM, et al. Nuclear respiratory factor 2 senses changing cellular energy demands and its silencing down-regulates cytochrome oxidase and other target gene mRNAs[J]. Gene ,2006,374: 39-49.

二级参考文献41

  • 1Coffey V G, Hawley J A. The molecular bases of training adaptation[J]. Sports Med, 2007,37 (9) : 737-763.
  • 2Hornberger T A, Armstrong D D, Koh T J, et al. Intracellular signaling specificity in response to uniaxial vs multiaxial stretch:implications for mechanotransduction [J]. Am J Physiol Cell Physiol, 2005,288(1) : C185-194.
  • 3Schertzer J D, Green H J,Fowles J R, et al. Effects of prolonged exercise and recovery on sarcoplasmic reticulum Ca^2+ cycling properties in rat muscle homogenates[J]. Acta Physiol Stand, 2004,180:195-208.
  • 4Holloway G P,Green H J,Duhamel T A,et al. Muscle sarcoplas mic reticulum Ca^2+ cycling adaptations during 16h of heavy intermittent cycle exercise[J]. J Appl Physiol, 2005,99 (3) : 836- 843.
  • 5Chin E R. Role of Ca^2+/calmodulin-dependent kinases in skeletal muscle plasticity[J]. J Appl Physiol, 2005,99 (2) : 414-423.
  • 6Smith M A,Reid M B. Redox modulation of contractile function in respiratory and limb skeletal muscle[J]. Resp Physiol Neurohiol New Direct Exerc Physiol,2006,151(2-3):229-241.
  • 7Hardie D G,Sakamoto K. AMPK:a key sensor of fuel and energy status in skeletal muscle[J]. Physiology,2006,21(1):48-60.
  • 8Jorgensen S B, Wojtaszewski J F P, Viollet B, et al. Effects ofαAMPK knockout on exercise-induced gene activation in mouse skeletal muscle[J]. Faseb J,2005,19(9):1146-1148.
  • 9Durante P E,Mustard K J,Park S H,et al. Effects of endurance training on activity and expression of AMP-activated protein kinase isoforrns in rat muscles [J ]. Am J Physiol Endocrinol Metab,2002,283(1) :E178-186.
  • 10Atherton P J,Babraj J A,Smith K,et al. Selective activation of AMPK-PGC-1; or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation[J]. Faseb J, 2005, 19 (7): 786-788.

共引文献23

同被引文献57

  • 1马继政.PGC-1 α 与运动能力[J].南京体育学院学报(自然科学版),2008,7(1):1-3. 被引量:11
  • 2马继政,孙飙,张爱军,牛洁,薛莲.运动负荷递增时优秀运动员心输出量和摄氧量之间关系的研究[J].南京体育学院学报(自然科学版),2007,6(2):7-10. 被引量:24
  • 3Ahmed Zaid,Ronggui Li,Katarina Luciakova,Peter Barath,Susana Nery,B. Dean Nelson.On the Role of the General Transcription Factor Sp1 in the Activation and Repression of Diverse Mammalian Oxidative Phosphorylation Genes*[J]. Journal of Bioenergetics and Biomembranes . 1999 (2)
  • 4Ljubicic V,Joseph AM,Saleem A,et al.Transcriptional and post-transcriptional regulation of mitochondrial biogen-esis in skeletal muscle:effects of exercise and aging. Biochimica et Biophysica Acta . 2010
  • 5Hood DA,Irrcher I,Ljubicic V,et al.Coordination of met-abolic plasticity in skeletal muscle. Journal of Experimental Biology . 2006
  • 6Connor MK,Irrcher I,Hood DA.Contractile activity-in-duced transcriptional activation of cytochrome C involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. Journal of Biological Chemistry . 2001
  • 7Murakami T,Shimomura Y,Yoshimura A,et al.Induction of nuclear respiratory factor-1expression by an acute bout of exercise in rat muscle. Biochimica et Biophysica Acta . 1998
  • 8Lin J,Handschin C,Spiegelman BM.Metabolic control through the PGC-1family of transcription coactivators. Cell Metabol . 2005
  • 9Michael LF,Wu Z,Cheatham RB,et al.Restoration of in-sulin-sensitive glucose transporter (GLUT4)gene expres-sion in muscle cells by the transcriptional coactivator PGC-1. Proceedings of the National Academy of Sciences of the United States of America . 2009
  • 10Rckl KSC,Witczak CA,Goodyear LJ.Signaling mechanisms in skeletal muscle:acute responses and chronic adaptations to exercise. Life Sciences . 2008

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部