期刊文献+

Banach空间中的广义H-η-增生算子及其在变分包含中的应用 被引量:2

Generalized H-η-Accretive Operators in Banach Spaces With an Application to Variational Inclusions
下载PDF
导出
摘要 在Banach空间中,引入和研究了新的广义H-η-增生算子,对广义m-增生算子与H-η-单调算子提供了一个统一的框架.还定义了广义H-η-增生算子相应的预解算子,并且证明了其Lipschitz连续性.作为应用,考虑了涉及广义H-η-增生算子的一类变分包含问题的可解性.利用预解算子方法,构造了一个求解变分包含的迭代算法.在适当假设下,证明了变分包含解的存在性和由算法生成的迭代序列的收敛性. A new notion of generalized H-y-accretive operator which provided a unifying framework for the generalized m-accretive operator and the H-η-monotone operator in Banach spaces was introduced and studied. A resolvent operator associated with the generalized H-η-accretive operator was defined and its Lipschitz continuity was shown. As an application, the solvability for a class of variational inclusions involving the generalized H-η-accretive operators in Banach spaces was considered. By using the technique of resolvent mapping, an iterative algorithm for solving the variational inclusion in Banach space was constructed. Under some suitable conditions, the existence of solution for the variational inclusion and the convergence of iterative sequence generated by the algorithm were proved.
出处 《应用数学和力学》 CSCD 北大核心 2010年第4期472-480,共9页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10671135) 国家自然科学基金重点资助项目(70831005) 教育部高等学校博士点基金资助项目(20060610005)
关键词 广义胁H-η-增生算子 预解算子 变分包含 迭代算法 收敛性 generalized H-y-accretive operator resolvent operator variational inclusion iterative algorithm convergence
  • 相关文献

参考文献2

二级参考文献48

  • 1AGARWAL R P, CHO Y J, HUANG Nan-jing. Senasitivity analysis for strongly nonlinear quasi-variational Inclusions[J]. Appl Math Lett, 2000, 13(6): 19-24.
  • 2AGARWAL R P, HUANG Nan-jing, CHO Y J. Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mapping[J]. J. Inequal Appl, 2002, 7(6): 807-828.
  • 3DING Xie-ping, ZENG Liu-chuan. Perturbed proximal point algorithm for generalized quasi-variational-like inclusions[J]. J Comput Appl Math, 2000, 210: 153-165.
  • 4HUANG Nan-jing, FANG Ya-ping. A new class of general variational inclusions involving maxmal r/- monotone mappings[J]. Publ Math Debrecen, 2003, 62(1-2): 83-98.
  • 5FANG Ya-ping, HUANG Nan-jing. H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces[J]. Appl Math Lett, 2004, 17: 647-653.
  • 6XU Hong-kun. Inequalities in Banach spaces with applications[J]. Nonlinear Anal, 1991, 16 (12): 1127-1138.
  • 7KAZMI K R, BHAT M I. Iterative algorithm for a system of nonlinear variational-like inclusions[J]. Com- puters Math Applic 2004, 48: 1929-1935.
  • 8MUHAMMAD Aslam Noor. Equivalence of variational inclusions with resolvent equation[J]. Nonlinear Anal, 2000, 41: 963-970.
  • 9HASSOUNI A, MOUDAFI A. A perturbed algorithm for variational inclusions[J]. J Math Anal Appl, 1994, 185(3): 706-742.
  • 10FANG Ya-ping, HUANG Nan-jing. A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces[J]. Computers Math Applic, 2005, 49: 365-374.

共引文献9

同被引文献14

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部