期刊文献+

蚁群算法在服务器集群批量任务调度中的应用 被引量:3

Application of Ant Algorithm for Scheduling Multi-task in Service Cluster
下载PDF
导出
摘要 服务器集群中的负载均衡和作业调度是影响系统性能的重要因素.本文描述服务器集群批量任务的作业调度问题,对该问题建立了基于图的模型.由于使用一般的启发式算法或动态规划算法解决该问题具有局限性,本文引入蚁群算法进行求解,并针对该问题具体求解提出了启发式距离合适的计算方法.最后在仿真的基础上,讨论了算法的优化效果和收敛性,结果表明蚁群算法解决该问题具有优异的性能. When construct service clusters,the fact of load balancing and task scheduling is very important,it influences the performance of the whole network system.Sometimes,the task scheduling in a system is presented to be NP problem.This paper represents the problem of scheduling multi-tasks in service cluster and builds a graph based model to describe it.Due to the difficulties of resolving this problem using heuristic algorithm and dynamic programming algorithm,the ant colony algorithm,an evolutionary algorithm,is proposed.Then a novel approach of calculating the heuristic distance is proposed when using the ant colony algorithm.After all,based on the simulation,this paper compares the performance between the ant colony algorithm and the traditional round-robin algorithm in resolving this problem,the convergence of the ant colony algorithm is also discussed.The ant colony algorithm is demonstrated to be high performance in resolving the multi-task scheduling problem in service cluster.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第4期611-614,共4页 Journal of Chinese Computer Systems
基金 国家"八六三"高技术研究发展计划重大项目(2008AA01A317)资助 新一代业务运行管控协同支撑环境的开发项目资助
关键词 蚁群算法 服务器集群 批量任务 负载均衡 作业调度 ant colony algorithm service cluster multi-task task scheduling
  • 相关文献

参考文献5

  • 1Cai Zi-xing,Xu Guang-you.Artificial intelligence:principles and applications[M].Beijing:Tsinghua University Press,2004.
  • 2Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B,1996,26(1):1-13.
  • 3Rodammer F A,White K P.A recent survey of production scheduling[J].IEEE Transaction on System Manand Cybernetics,1998,18(6):841-851.
  • 4Jackek B,Wolfgang D,Erwin P.The job shop scheduling problem:conventional and new solution techniques[J].European Journal of Operational Research,1996,93(1):1-33.
  • 5姜桦,李莉,乔非,吴启迪.蚁群算法在生产调度中的应用[J].计算机工程,2005,31(5):76-78. 被引量:24

二级参考文献5

  • 1Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems,Man,and ?D瑈bernetics-Part B, 1996,26(1):1-13.
  • 2Besten M D, Stutzle T, Dorigo M. Ant Colony Optimization for the Total Weighted Tardiness Problem. Parallel Problem Solving fromNature - ?D?PSN Ⅵ 6th Intemational Conference, 2000.
  • 3Sjoerd V, Zwaan D, Marques C. Ant Colony Optimization for Job Shop Scheduling. http://citeseer.nj.nec.com/vanderzwaan99ant.html.
  • 4Peeters P, Brussel H V, Valckenaers P. Pheromone Based Emergent Shop Floor Control System for Flexible Flow Shops. Artificial Intelligence ?D?n Engineering ,2001,15:343-352.
  • 5Stutzle T, Darmstadt T U, Alexanderstr. An Ant Approach to the Flow Shop Problem. http://citeseer.nj.nec.com/273051.html.

共引文献23

同被引文献19

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部