期刊文献+

一种结合关联限制的最近邻分类策略

Approach for Combining Nearest Neighbor Classification with Pairwise Constraints
下载PDF
导出
摘要 研究关联限制在最近邻分类中的应用,提出结合关联限制的最近邻分类算法PCNN.算法分成两个阶段:首先通过自学习过程,成对地添加施加关联限制的样本对;然后再进行一般的最近邻分类.引入最大半径和有效距离,并进一步给出自学习时样本对的评估方法,并且基于实验结果进行了分析.由于来自运输企业的行车数据能够较容易地施加关联限制,本算法比行车数据分类算法CIRP更为经济.对4个UCI数据集的分类结果也显示了算法的有效性. The application of pairwise constraints in the Nearest Neighbor (NN) classification process is studied,and Pairwise Constrained NN(PCNN) algorithm is proposed.The PCNN algorithm consists of two steps,the first is a self-training step,during which pairs of constrained samples will be labeled simultaneously;and the second is a general NN classification process step.The max radius and effective distance is defined.Based upon them,the evaluation method on sample pairs for PCNN′s self-training process is proposed,and is further studied based upon test results.As the vehicle traveling records from transportation enterprise are readily labeled by pairwise constraints,they can be classified by PCNN more economically than CIRP,a classification algorithm specialized on the classification of vehicle traveling data.The classification of four UCI datasets also supports the effectivity of PCNN.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第4期735-738,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60773126 60805042)资助 福建省青年创新基金项目(2006F3075)资助 福州大学科技发展基金(2009-XQ-26)资助
关键词 最近邻 关联限制 自学习 半监督学习 行车数据分析 nearest neighbor pairwise constraints self-training semi supervised learning vehicle traveling data analysis
  • 相关文献

参考文献5

  • 1Wagstaff Kiri,Cardie Claire.Clustering with instance-level constraints[C].In:Proc.of the 17th Int′l Conf.on Machine Learning (ICML 2000),2000,1103-1110.
  • 2何振峰,熊范纶.结合限制的分隔模型及K-Means算法[J].软件学报,2005,16(5):799-809. 被引量:23
  • 3Tan Pang-ning,Steinbach Michael.Kumar Vipin.Introduction to data mining[M].Published by Addison-Wesley,2006.
  • 4Wei Li,Keogh Eamonn.Semi-supervised time series classification[C].In:Proc.of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2006),2006,748-753.
  • 5Huang Zhen-zhi,He Zhen-feng.A novel approach to extract speed pattern from VTDR data[C].In:Proc.of the International Conference on Intelligent Computation Technology and Automation (ICCTA 2008),2008,2:209-214.

二级参考文献10

  • 1Wagstaff K, Cardie C, Rogers S, Schroedl S. Constrained K-means clustering with background knowledge. In: Brodley C, Danyluk AP, eds. Proc. of the 18th Int'l Conf. on Machine Learning (ICML 2001). San Francisco: Morgan Kaufmann Publishers, 2001.577-584.
  • 2Blake C, Merz J. UCI repository of machine learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.htmi
  • 3Klein D, Kamvar S, Manning C. From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering. In: Sammut C, Hoffmann A, eds. Proc. of the 19th Int'l Conf. on Machine Learning (ICML 2002). San Francisco:Morgan Kaufmann Publishers, 2002. 307-314.
  • 4Bottou L, Bengio Y. Convergence properties of the K-means algorithm. In: Tesauro G, Touretzky DS, Leen TK, eds. Advances in Neural Information Processing Systems 7. Cambridge: MIT Press, 1995.585-592.
  • 5Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: Part Ⅰ. SIGMOD Record, 2002,31(2):40-45.
  • 6Basu S, Banerjee A, Mooney R. Semi-Supervised clustering by seeding. In: Sammut C, Hoffmann A, eds. Proc. of the 19th Int'l Conf. on Machine Learning (ICML 2002). San Francisco: Morgan Kaufmann Publishers, 2002. 19-26.
  • 7Jain A, Murty M, Flynn P. Data clustering: A review. ACM Computing Surveys, 1999,31(3):264-323.
  • 8Wagstaff K. Intelligent clustering with instance-level constraints [Ph.D. Thesis]. Cornell University, 2002.
  • 9Wagstaff K, Cardie C. Clustering with instance-level constraints. In: Langley P, ed. Proc. of the 17th Int'l Conf. on Machine Learning (ICML 2000). San Francisco: Morgan Kaufmann Publishers, 2000. 1103-1110.
  • 10Basu S, Banerjee A, Mooney R. Comparing and unifying search-based and similarity-based approaches to semi-supervised clustering. In: Fawcett T, Mishra N, eds. Proc. of the 20th Int'l Conf. on Machine Learning (ICML 2003) Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. New Orleans: AAAI Press, 2003.42-49.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部