期刊文献+

确定TSP全局最优解部分边的蒙特卡罗模型 被引量:1

Monte Carlo Algorithm for Fixing Partial Edges Belonging to TSP Global Optimal Solution
下载PDF
导出
摘要 旅行商问题求解模型和方法具有广泛的理论和应用价值,如何简化问题是提高问题求解效率的有效手段之一.通过对问题优化解集及优化解之间关系和性质分析,建立了高概率确定问题全局最优解中部分边的蒙特卡罗模型.利用该模型建立的算法可减少问题求解需进一步确定的边数量,也可用于对问题初始边集进行裁减,从而降低了问题的求解难度,提高各类基于边求解算法的计算效率,具有广泛的普适性.本文提出的模型可泛用于各种规模旅行商问题的求解中. The model and method of solving traveling salesman problem is of abroad value of theory and application.It is one of efficacious means to improve problem solving efficiency,how to simplify the process of problem solving.By analyzing relationship and character among problem optimal solution sets and among optimal solutions,the Monte Carlo model ascertaining partial edges belonging to problem's global optimal solution with high probability is established.The edge number which need be fixed more is cut down utilizing the model,and the initial edge set of problem can be reducing.Consequently,the difficulty solving problem is depressed,and the efficiency is improved.The model is with universal adaptation character.Statistic experimental result has validated correctness of the model.
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第4期747-751,共5页 Journal of Chinese Computer Systems
基金 广东省自然科学基金项目(8452800001000086)资助 中国博士后科学基金项目(20070421015)资助
关键词 旅行商问题 全局最优解 蒙特卡罗算法 固定边 缩减规模 traveling salesman problem global optimal solution monte carlo algorithm fixing edges reducing scale
  • 相关文献

参考文献12

  • 1WALSHAW C.A multilevel lin-kernighan-helsgaun algorithm for the travelling salesman problem[R].01/IM/80,London:University of Greenwich,Computing and Mathematical Sciences,September 27,2001,1-9.
  • 2Walshaw C.A Multilevel approach to the travelling salesman problem[J].Operations Research,2002,50(5):862-877.
  • 3邹鹏,周智,陈国良,顾钧.求解TSP问题的多级归约算法[J].软件学报,2003,14(1):35-42. 被引量:60
  • 4Walshaw C.Multilevel refinement for combinatorial optimisation problems[J].Annals of Operations Research,October,2004,131(1-4):325-372.
  • 5Fischer T,Metz P.Reducing the size of traveling salesman problem instances by fixing edges[C].Seventh European Conference on Evolutionary Computation in Combinatorial Optimisation.April,2007,4446:72-83.
  • 6张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922. 被引量:165
  • 7杨辉,康立山,陈毓屏.一种基于构建基因库求解TSP问题的遗传算法[J].计算机学报,2003,26(12):1753-1758. 被引量:40
  • 8王宇平,李英华.求解TSP的量子遗传算法[J].计算机学报,2007,30(5):748-755. 被引量:71
  • 9Wang D,Wu X B,Mao X C,et al..Reducing initial edge set of traveling salesman problems[A].Proc.of the Sixth Int.Conf.on Machine Learning and Cybernetics[C].Hong Kong,IEEE Pressed,2007,4:2333-2338.
  • 10Boese K.Cost versus distance in the traveling salesman problem[R].TR-950018,Computer Science Department,UCLA,1995.

二级参考文献44

  • 1李未,黄文奇.一种求解合取范式可满足性问题的数学物理方法[J].中国科学(A辑),1994,24(11):1208-1217. 被引量:21
  • 2[1]Garey MR, Johnson DS. Computers and Intractability: a Guide to the Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.
  • 3[2]Johnson DS, McGeoch LA. The traveling salesman problem: a case study in local optimization. In: Aarts EH, Lenstra JK, eds. Local Search in Combinatorial Optimization. New York: John Wiley and Sons, 1996.
  • 4[3]Jünger M, Reinelt G, Rinaldi G. The traveling salesman problem. In: Ball M, Magnanti T, Monma CL, Nemhauser G, eds. Handbook on Operations Research and Management Science: Networks North-Holland. 1995. 225~330.
  • 5[4]Burkard RE, Deineko VG, Dal RV, et al. Well-Solvable special cases of the traveling salesman problem: a survey. SIAM Review, 1998,40(3):496~546.
  • 6[5]Clarke G, Wright JW. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 1964,12: 568~581.
  • 7[6]Christofides N. Worst-Case analysis of a new heuristic for the traveling salesman problem. Technical Report, No.388, Pittsburgh, PA: Graduate School of Industrial Administration, Carnegie Mellon University, 1976.
  • 8[7]Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science, 1983,220(4598):671~680.
  • 9[8]Holland JH. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. 2nd ed., Cambridge, MA: MIT Press, 1992.
  • 10[9]Croes GA. A method for solving traveling salesman problems. Operations Research, 1958,6:791~812.

共引文献322

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部