期刊文献+

网格曲面近似“最直路径”的快速计算 被引量:4

Fast Computing for the Approximate Straightest Path on Triangular Mesh Surfaces
下载PDF
导出
摘要 为实现网格模型两点间最短路径的近似逼近,提出一种网格曲面上近似"最直路径"的计算方法.利用起点与终点邻域特征获得初始切割面,对网格曲面上的三角片逐步切割求交,扩展"最直路径";在求交过程中逐步调整切割平面的方向,直至终点.实验结果表明,文中方法快速、有效. To obtain the approximation of the shortest path between two points on mesh models, a new method for approximately computing the straightest path on mesh models is proposed in this paper. It utilizes the neighboring feature of the starting point and the end point to determine the initial cutting plane. Then, it calculates the intersection point on the facets of the triangular mesh to extend the straightest path. During this process, it adjusts the direction of the cutting plane when a new intersection point is obtained. The adjustment terminates until the path reaches the end point. The experimental results show that the proposed algorithm is fast and effective.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第4期599-604,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60903143) 国家教育部重点面上项目(209051) 浙江省自然科学基金(Y1090141) 浙江省科技计划项目(2009C33001)
关键词 三角网格 测地路径 最直路径 切割面 triangular meshes geodesic path straightest path cutting plane
  • 相关文献

参考文献13

  • 1Sifri O,Sheffer A,Gotsman C.Geodesic-based surface remeshing[C]//Proceedings of the 12th International Meshing Roundtable,Santa Fe,2003:189-199.
  • 2Lee H,Tong Y,Desbrun M.Geodesics-based one-to-one parameterization of 3D triangle meshes[J].IEEE Multimedia,2005,12(1):27-33.
  • 3Lee S,Han J,Lee,H.Straightest paths on meshes by cutting planes[M].Lecture Notes in Computer Science.Heidelberg:Springer,2006,4077:609-615.
  • 4Polthier K,Schmies M.Straightest geodesics on polyhedral surfaces[M]//Hege H C,Pohhier K.Mathematical Visualization:Algorithms Applications,and Numerics.Heidelberg:Springer,1998:135-150.
  • 5Mitchell J S B,Mount D M,Papadimitriou C H.The discrete geodesic problem[J].SIAM Journal on Computing,1987,16(4):647-668.
  • 6Chen J,Han Y.Shortest paths on a polyhedron[C]//Proceedings of the 6th Annual Symposium on Computational Geometry,Berkeley,1990:360-369.
  • 7Surazhsky V,Surazhsky T,Kirsanov D,et al.Fast exact and approximate geodesics on meshes[J].ACM Transactions on Graphics,2005,24(3):553-560.
  • 8Kanai T,Suzuki H.Approximate shortest path on a polyhedral surface and its applications[J].Computer-Aided Design,2001,33(11):801-811.
  • 9余晓容,杨晓东,申长雨.曲面上任意两点的近似最短路径算法研究[J].中国图象图形学报,2005,10(7):900-904. 被引量:5
  • 10张丽艳,吴熹.三角网格模型上任意两点间的近似最短路径算法研究[J].计算机辅助设计与图形学学报,2003,15(5):592-597. 被引量:22

二级参考文献20

共引文献30

同被引文献54

  • 1段凡丁.关于最短路径的SPFA快速算法[J].西南交通大学学报,1994,29(2):207-212. 被引量:57
  • 2Botsch M,Pauly M,Kobbelt L. Geometric modeling based on polygonal meshes[A].{H}New York:ACM Press,2007.CourseNotes#23.
  • 3Halli A,Saaidi A,Satori K. Extrusion and revolution mapping[J].{H}ACM TRANSACTIONS ON GRAPHICS,2010,(5):ArticleNo.132.
  • 4Jeschke S,Cline D,Wonka P. Rendering surface details with diffusion curves[J].{H}ACM TRANSACTIONS ON GRAPHICS,2009,(5):ArticleNo.117.
  • 5Loop C,Blinn J. Resolution independent curve rendering using programmable graphics hardware[J].{H}ACM TRANSACTIONS ON GRAPHICS,2005,(3):1000-1009.
  • 6Blinn J F. Simulations of wrinkled surfaces[J].Computer Graphics,1978,(3):286-292.
  • 7Tarini M,Cignoni P,Rocchini C. Real time,accurate,multi-featured rendering of bump mapped surfaces[J].{H}COMPUTER GRAPHICS FORUM,2000,(3):119-130.
  • 8Zheng Q,McCool M D,Kaplan C S. Real-time texturemapped vector glyphs[A].{H}New York:ACM Press,2006.125-132.
  • 9De Toledo R,Wang B,Levy B. Geometry textures and applications[J].{H}COMPUTER GRAPHICS FORUM,2008,(8):2053-2065.
  • 10Wang L,Zhou K,Yu Y. Vector solid textures[J].{H}ACM TRANSACTIONS ON GRAPHICS,2010,(4):ArticleNo.86.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部