期刊文献+

Aermet100钢的高温变形本构关系与微观组织演变 被引量:2

High-temperature deformation constitutive relationship and microstructure evolution in Aermet100 steel
下载PDF
导出
摘要 在变形温度800~1200℃和应变速率0.01~50s-1下,利用Gleeble-3800热模拟试验机对Aermet100钢的高温变形本构关系与微观组织演变进行了研究。结果表明,增加应变速率和降低变形温度都能提高材料的流动应力,延迟动态再结晶发生,使变形材料表现出加工硬化和动态回复。运用位错理论研究了微观组织和流动应力曲线的变化规律并做出了合理的解释。在压缩实验的变形条件下变形激活能为489.10kJ/mol。确定了峰值应力、变形温度和应变速率之间的双曲正弦模型的本构关系。 High-temperature deformation constitutive relationship and microstructure evolution in Aermet100 steel were investigated with compression tests at deformation temperatures of 800~1200 ℃ and strain rates of 0.01~50 s^-1 on a Gleeble-3800 thermo-mechanical simulator. Results show that increasing strain rate and decreasing deformation temperature can make the flow stress increase, hamper the occurrence of dynamic recrystallization, and promote the occurrence of work hardening and dynamic recovery in deformation metals. The change law of microstructure and stress-strain curves was investigated using dislocation theory, and reasonable explanation of it was made. The deformation activation energy of Aermet100 steel under the deformation conditions of the compression tests was determined as Q=489.10 kJ/mol. The constitutive relationship between peak stress, strain rate and deformation temperature was established by means of the conventional sinh model.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2010年第3期83-88,共6页 Transactions of Materials and Heat Treatment
基金 航空基础科学基金项目(03H53048)
关键词 AERMET100钢 本构关系 微观组织 变形激活能 Aermet100 steel constitutive relationship microstructure activation energy
  • 相关文献

参考文献15

  • 1Takeshi lwamoto, Toshio Tsuta. Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels [ J]. International Journal of Plasticity, 2000, 16 (7 - 8) : 791 - 804.
  • 2Zrnik J, Stejskal O, Novy Z, et al. Relationship of microstructure and mechanical properties of TRIP-aided steel processed by press forging[ J]. Journal of Materials Processing Technology, 2007, 192 - 193:367 - 372.
  • 3SUN C Y, FANG G, LEI L P, et al. Micro-thermomechanical constitutive model of transformation induced plasticity and its application on armour steel[ J]. Materials Science and Engineering A, 2009, 499 : 18 - 22.
  • 4赵振业,李春志,李志,刘天琦,马新闻.探索强韧化机理,创新超高强度高韧性不锈钢[J].中国有色金属学报,2004,14(F01):202-206. 被引量:25
  • 5Richard L S, Thomas, John R, et al. Internal hydrogen embrinlement of ultrahigh-strength AERMET 100 Steel[ J]. Metallurgical and Materials Transactions A, 2003, 34:327- 344.
  • 6Kwon H, Kim C M, Lee K B, et al. Effects of Co and Ni on secondary hardening and fracture behavior of martensitic steels bearing W and Cr[J]. Metallurgical and Materials Transactions A, 1998, 29:397 -401.
  • 7Kwon H, Lee K B, Yang H R, et al. Secondary Hardening and Fracture Behavior in Alloy Steels Containing Mo, W, and Cr[ J]. Metallurgical and Materials Transactions A, 1997, 28 : 775 -784.
  • 8Raghavan Ayer, Machmeier P M. On the characteristics of M2C carbides in the peak hardening regime of AerMet100 steel[ J]. Metallurgical and Materials Transactions A, 1998, 29 : 903 - 905.
  • 9杨小红,张士宏,王忠堂,张路宁,冯斌.AerMet100超高强度钢热变形行为[J].塑性工程学报,2007,14(6):121-126. 被引量:18
  • 10YUE Chong-xiang, ZHANG Li-wen, LIAO Shu-lun, et al. Research on the dynamic recrystallization behavior of GCr15 steel[ J]. Materials Science and Engineering A, 2009, 499 ( 1 - 2) : 177 - 181.

二级参考文献36

  • 1万如.新型高合金二次硬化超高强度钢的发展[J].材料工程,1994,22(11):1-5. 被引量:12
  • 2McCa.,TJ,闫洪.AerMet100合金—现代航空工业的一种新型超高强度合金[J].国外金属加工,1994(2):52-54. 被引量:3
  • 3Wan Xiaoru (Beijing University of Aeronautics and Astronautics,Dept. of Materials Science Engineering).AerMet100——极好综合性能的超高强度钢[J].北京航空航天大学学报,1996,22(6):639-644. 被引量:28
  • 4[3]L D Wang,L Z Jiang,M Zhu,X Liu,W M Zhou.Improvement of Toug-hness of Ultrahigh Strength Steel AerMet100[J].J.Mater Sci.Technol,2005.21,160~168
  • 5[4]Z M Hu,B Deanta.Experimental and theoretical analysis of deformation and microstructu-revolution in the hot-die forging of titanium alloy aerofoil sections[J].J Mater Proc Tech,1999.88,251~265
  • 6[5]Z X Guo,T N Baker.On the microstructure and thermo-mechanical processing of titanium alloy IMI685[J].Materials Science& Engineering,1992.156,63~76
  • 7[7]M Y Li,E J Knystautasa,M Krishnadev.Enhanced micro hardness of four modern steels following nitrogen ion implantation[J].Surface and Coatings Technology,2001.138,220~228
  • 8[8]P A Sundaram,D K Marble.Hydrogen diffusivity in Aermetm100 at room temperature galvanostatic charging conditions[J].Journal of Alloys and Compounds,2003.360,90~97
  • 9[9]L C Chhabildas,T F Thornhil.Fracture resistant properties of armlet steels[J].International Jou-rnal of Impact Engineering,2001.26,77~91
  • 10[10]A S Khan,R Q Liang.Behaviors of three BCC metal over a wide range of strain rates and temperatures experiments and modeling[J].International Journal of Impact Engineering,1999.10,1089~1109

共引文献49

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部