期刊文献+

电场对AZ31B与Al连接界面扩散反应和扩散溶解层结构的影响 被引量:6

Influence of electric field on interfacial diffusion reaction and microstructure of diffusion dissolution layer of AZ31B/Al joint
下载PDF
导出
摘要 应用电场激活扩散连接技术(FADB)实现AZ31B与Al的连接。研究了电场对AZ31B/Al结合界面扩散反应和扩散溶解层结构的影响。采用光学显微镜、扫描电子显微镜、X射线能谱与X射线衍射仪等方法分析了扩散溶解层的显微组织、相组成和元素分布。结果表明,在FADB条件下以铝粉为中间层时扩散溶解层由均匀共晶层、过渡层和胞状晶组成;以铝箔为中间层时由镁合金侧共晶层和铝侧过渡层构成。电场强度对扩散溶解层宽度和形态均有显著影响。溶解层随电流密度升高而变宽。以铝粉为中间层在温度450℃,时间50min,电流密度80A·cm-2时过渡层宽度为120μm,为未施加电场时的12倍。电流对共晶层内晶粒尺寸有显著影响。当电流密度由28A·cm-2升至48A·cm-2时,点状晶粒晶粒尺寸由2μm降至0.5μm。 Interfacial diffusion reaction and structure of Mg-Al diffusion dissolution layer at interface of AZ31B/Al joints prepared by electric field-activated diffusion bonding(EFADB)process using aluminum powder and aluminium foil as intermediate layer, respectively, were investigated. The microstructure, phases and component distribution of the Mg-Al diffusion dissolution layer were analysed by means of optical microscope, SEM, EDS and XRD. The results show that when the intermediate layer is aluminum powder the diffusion dissolution layer is composed of eutectic layer, transition layer and cellular crystal layer, and the dissolution layer consists of eutectic layer and transition layer when the intermediate layer is aluminum foil. The morphology and width of the diffusion dissolution layer are significantly affected by the electric field intensity. When the current density is 80 A·cm^-2 , the thickness of the transition layer is 120 μm, which is 12 times of that at current-free condition for the AZ31B/Al joint prepared at 450 ℃ for 50 min using aluminum powder as the intermediate layer. The grain size of the eutectic layer decreses from 2 μm to 0.5 μm when the current density increases from 28 A·cm^-2 to 48 A·cm^-2 .
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2010年第3期102-106,共5页 Transactions of Materials and Heat Treatment
基金 国家自然科学基金项目(50671070) 山西省归国留学人员科学基金项目(2008-26)
关键词 AZ31B AL 固相扩散 电场 扩散溶解 AZ31B aluminum solid state diffusion electric field diffusion dissolution
  • 相关文献

参考文献14

  • 1Davies G M. Aluminum in automotive applications[J]. Metals and Materials, 1991, 7(2) :86 -91.
  • 2Larsson J K. Overview of joining technologies in the automotive industry[ J]. Welding Reareh Abroad, 2003, 49 (6) :29 -45.
  • 3Cao X. A review of laser welding techniques for magnesium alloys[J].Journal of Materials Processing Technology, 2006, 171 (2) : 188 - 204.
  • 4Feng A, Munir Z A. Effect of an electric field on self-sustaining combustion synthesis: part Ⅰ. Modeling studies[ J]. Metall Trans B, 1995, 26 (3) : 581 -586.
  • 5Feng A, Graeve O A, M unir Z A. Modeling solution for electric field-activated combustion synthesis[ J]. Comput Mater Sci, 1998, 12 (2) :137 - 155.
  • 6Bertolino N, Garay J, Anselmi-Tamburini U, et al. Electromigration effects in Al-Au multilayers[ J]. Scr Mater, 2001, 44 (5) :737 - 742.
  • 7Garay J, Anselmi-Tamburini U, Munir Z A. Enhanced growth of intermetallic phases in the Ni-Ti system by current effects[ J]. Acta Mater, 2003, 51 ( 15 ) :4487 -4495.
  • 8Friedman J R, Garay J E, Anselmi-Tamburini U, et al. Modified interfacial reactions in Ag-Zn muhilayers under the influence of high DC current [ J]. Intermetallies, 2004, 12(6) :589 -597.
  • 9Garay J, Glade S C, Anselmi-Tamburini U, et al. Electric current enhanced defect mobility in Ni3Ti intermetallics[ J ]. Appl Phys Lett, 2004, 85 (4) :573 -575.
  • 10Hans Conrad. Effects of electric current on solid state phase transformations in metals[ J]. Mater Sci Eng A,2000,287:227 -237.

共引文献43

同被引文献68

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部