期刊文献+

一类风险模型的破产概率 被引量:1

Ruin Probability for a Risk Model
下载PDF
导出
摘要 进一步推广Sparre Andersen风险模型,并得到了破产概率的尾等价式,它与Sparre Andersen风险模型相应的结果一致. This paper further generalizes the Sparre Anderson risk model and gives tail equivalence relationship for the ruin probability, which eoincides with that for corresponding ruin probability in the Sparre Anderson model.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2010年第2期35-38,共4页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金资助项目(10771119) 曲阜师范大学科研启动基金资助项目
关键词 破产概率 更新风险模型 重尾分布 ruin probability renewal risk model heavy-tailed distribution
  • 相关文献

参考文献10

二级参考文献50

  • 1苏淳,唐启鹤,江涛.A contribution to large deviations for heavy-tailed random sums[J].Science China Mathematics,2001,44(4):438-444. 被引量:27
  • 2Ross, S.M., Stochastic Processes, Wiley, New York, 1983.
  • 3Grundell, J., Aspects of Risk Theory, Springer-Verlag, Berlin, 1991.
  • 4Veraverbeke, N., Asymptotic behavior of wiener-hopf factors of a random walk, Stoch. Proc. and their Appl., 5(1977), 27-37.
  • 5Tang, Q.H., Su, C., Ruin probabilities for large claims in delayed renewal risk model, Southeast Asian Bulletin of Math., 25(2002), 735-743.
  • 6Wang, Y.B. and Cheng, D.Y., Ruin probability in the delayed renewal risk model, to appear, 2004.
  • 7Asmussen, S., Kalashnikov, V., Konstantinides, D., Kluppelberg, C. and Tsitsiashvili, G., A local limit theorem for random walk maxima with heavy tails, Statist. Probab. Lett., 56(2002), 399-404.
  • 8Asmussen, S., Foss, S. and Korshunov, D., Asymptotics for sums of random variables with local subexponential behavior, J. Theoret. Prob., 16(2003), 489-518.
  • 9Kluppelberg, C., Subexponential distributions and integrated tails, J. Appl. Probab., 25(1988), 132-141.
  • 10Foss S. and Zachary S., Tile maximum oa a random time interval of a random walk with long-tailed increments and negative drift, Ann. of Appl. Prob., 13(2003), 37-53.

共引文献45

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部