期刊文献+

复合添加剂对NiCoCuZn铁氧体高频磁导率色散行为的影响 被引量:1

Effect of Composite Additives on Magnetic Permeability Dispersion Behaviors of NiCoCuZn Ferrites
下载PDF
导出
摘要 用低温烧结法制备NiCoCuZn尖晶石铁氧体,并研究了不同复合添加剂(Bi2O3-V2O5,Bi2O3-PbO)对其磁导率色散行为的影响。结果表明:在Bi2O3-V2O5复合掺杂时,晶粒尺寸随Bi2O3含量的增大而增大。微观结构的变化导致了材料初始磁导率和截止频率的变化。磁导率的色散机制主要以畴壁位移为主。然而在Bi2O3-PbO复合掺杂下,晶粒尺寸随Bi2O3含量的减小而增大,材料的初始磁导率较Bi2O3-V2O5复合掺杂更小,截止频率更高。 NiCoCuZn spinel ferrites were prepared by a low-temperature sintering procedure with adding different composite additives, Bi2O3-V2O5 and Bi2O3-PbO. The effect of different composite additives on their magnetic permeability dispersion behaviors was investigated. Results show that for the samples with Bi2O3-V2O5 additive, the grain size increases with increasing of the Bi2O3 content in the composite additive. The microstructure change results in variations of initial magnetic permeability values and cutoff frequencies. Their permeability dispersion behaviors are ascribed to the domain wall movement mechanism. However, for the samples with Bi2O3-PbO additive, the grain size decreases with increasing of the Bi2O3 content in the composite additive. Compared with samples with Bi2o3-V2O5 additive, their initial magnetic permeability values are smaller, but the cutoff frequencies are higher.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2010年第4期618-622,共5页 Rare Metal Materials and Engineering
基金 电子科技大学青年基金(L08010301JX0618 L08010301JX05013) 国家自然科学基金(60701016)
关键词 尖晶石铁氧体 添加剂 磁导率色散 spinel ferrites additive permeability dispersion
  • 相关文献

参考文献13

二级参考文献30

  • 1Alex Paultre.微环形调制器使得芯片大小的光连接成为可能[J].今日电子,2005(10):35-35. 被引量:1
  • 2周波.-[J].第八届全国磁学与磁性材料会议论文集,1993,:191-194.
  • 3海原伸男.-[J].新素材,1993,1:62-66.
  • 4Nakano A. Proceedings of Sixth International Confexence on Ferrite (ICF6), Tokyo, 1992, 1225.
  • 5Byeon S C, J Appl Phys, 1997, 136: 5103.
  • 6何水校 杨思勇.[A]..中国电子学会应用磁学分会“第六届国内外磁学与磁性材料及应用技术交流会暨2003年海峡两岸磁学及磁性材料研讨会”论文集[C].海南博鳌,2003.139.
  • 7蔡健益.[A]..中国电子学会应用磁学分会“第六届国内外磁学与磁性材料及应用技术交流会暨2003年海峡两岸磁学及磁性材料研讨会”论文集[C].海南博鳌,..
  • 8YueZ,Zhou J,Li L,et al.[J].JMagnMagnMater,2000,208:55-60.
  • 9Zhang H G,et al.[J].IEEE Trans Magn,2002,38,(4):1797-1802.
  • 10Yamaguchi,Digests of ICF-8,Satellite Conf in Tokyo Japan,2000,10.

共引文献64

同被引文献24

  • 1黄兰萍,陈康华,李晶儡,彭伟才.Fe磁性纳米线阵列的制备与微波吸收性能研究[J].稀有金属材料与工程,2006,35(3):480-483. 被引量:17
  • 2苏轶坤,汤皎宁,李钧钦.Co纳米阵列的制备及其直径对磁性的影响[J].稀有金属材料与工程,2007,36(7):1189-1192. 被引量:8
  • 3Ursache A et al. J Appl Phys[J],2005,97(10): 322.
  • 4Niu, H L et al. Nanotechnology[J], 2004,15: 1054.
  • 5Li M et al. Chin Phys Lett[J], 1994, 11: 510.
  • 6Fei X L et al. Solid State Commun[J], 2007, 141: 25.
  • 7Sharif R et al. J Magn Magn Mater[J].2007,310: 830.
  • 8Gerber R, Wright C D. Applied Magnetism[M]. Dordrecht: Kluwer Academic Publisher, 1992: 457.
  • 9Naito Y, Suetake K. IEEE Trans Microwave Theory Technol[J], 1971: MTT-19: 65.
  • 10Han M G et al. App Phys Lett[J], 2007, 90(19): 2507.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部