期刊文献+

基于双空间金字塔匹配核的图像目标分类 被引量:3

Bi-space pyramid match kernel for image object classification
下载PDF
导出
摘要 提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字塔型结构,通过适当匹配可以得到正定核函数,该函数具有线性计算复杂度,可以运用于基于核的学习算法.将BSPM嵌入支持向量机对公共数据库中图像目标进行分类,实验结果表明该方法对图像具有良好的分类能力,优于词汇导向的金字塔匹配核和空间金字塔匹配核. Local features based bi-space pyramid match kernel(BSPM) was proposed for image object classification.In both feature space and image space,a unified multi-resolution framework was built using the local features in order to better describe the semantic content of an image.The pyramids can be built in both the feature space and image space with the proposed method,and the positive definite kernel function can be obtained through suitable matching.This function with linear computation cost can be used in kernel-based learning algorithms.The BSPM was embedded into the support vector machine for image classification on the public image databases,and the experiments show that the proposed method can achieves good classification ability and outperform both vocabulary-guided pyramid match kernel and spatial pyramid match kernel.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2010年第3期313-320,共8页 JUSTC
关键词 双空间金字塔匹配核 局部特征 空间金字塔 特征空间金字塔 bi-space pyramid match kernel local feature spatial pyramid pyramid in feature space
  • 相关文献

参考文献15

  • 1Zhang J, Marszalek M, Lazebnik S, et al. Local features and kernels for classification of texture and object categories: A comprehensive study [J]. International Journal of Computer Vision, 2007, 73 (2) :213 238.
  • 2Alexis Joly. New local descriptors based on dissociated dipoles [C]//Proceedings of the 6th ACM International Conference on Image and Video Retrieval. ACM, 2007:573-580.
  • 3Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2) :91-110.
  • 4Fergus R, Perona P, Zisserman A. Object class recognition by unsupervised scale-invariant learning [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2003:264-271.
  • 5Berg A, Berg T, Malik J. Shape matching and object recognition using low distortion correspondences [C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2005:26-33.
  • 6Lazebnik S, Schmid C, Ponce J. A maximum entropy framework for part-based texture and object recognition [C]//Proceedings of International Conference on Computer Vision. IEEE,2005:832-838.
  • 7Lazebnik S, Schmid C, Ponce J. Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2006:2 169-2 178.
  • 8L Fei-Fei, Perona P. A Bayesian hierarchical model for learning natural scene categories [C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2005 : 524-531.
  • 9Grauman K, Darrell T. Pyramid match kernels:Discriminative classification with sets of image features [C]//Proceedings of International Conference on Computer Vision. IEEE,2005:1 458-1 465.
  • 10Grauman K, Darrell T. Approximate correspondences in high dimensions [C]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2007: 505-512.

同被引文献26

  • 1孙玉秋,田金文,柳健.基于图像金字塔的分维融合算法[J].计算机应用,2005,25(5):1064-1065. 被引量:8
  • 2陆波,尉询楷,毕笃彦.支持向量机在分类中的应用[J].中国图象图形学报,2005,10(8):1029-1035. 被引量:23
  • 3Meyer F, Bouthemy P. Region-based tracking using affinemotion models in long image sequences [J]. CVGIP:Imageunderstanding, 1994, 60(2):119-140.
  • 4Bascle B, Deriche R. Region tracking through image se-quence [J]. Proceedings of Fifth International Conference onComputer Vision , June 20-23 , 1995,Cambrideg, M A.New York:IEEE Xplore, 1995:302-307.
  • 5Wei Shouder, Lai Shanghong. Fast template matching basedon normalized cross correlation with adaptive multilevelwinner update [ J]. IEEE Transactions on Image Processing,2008,17(11):2227-2235.
  • 6Gharavi-Alkhansari M. A fast globally optimal algorithm fortemplate matching using low-resolution pruning [ J]. IEEETransactions on Image Processing, 2001,10(4) :526-533.
  • 7VernonW, Parry As porrer M,et al. The First Draft of an Evaluative Instrumental Grid to Interpret Shoe Wear Patterns [J]. Journal ofForensic Identification. 1999,49 (2):142-173.
  • 8DietterichT G, Lathrop R H,Tomas L P. Solving the Multiple Instance Problem with Axis-Parallel Rectangles [J]. Artificial Intelligence, 1997, 89(12): 31-71.
  • 9S.Lazebnik, C. Schmid,J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesfC]. InProceedings of the IEEE Conference on Computer Vision and Pattern Filtering, New York City, NY, Vol. 2,2006,pp. 2169-2178.
  • 10N. Dalai, B. Triggs. Histograms of Oriented Gradients for Human Detection[C]. In Proceedings IEEE International Conference ComputerVision and Pattern Recognition, 20-26 June 2005,San Diego, CA, USA Vol.l,pp.886-893.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部