期刊文献+

基于增强显现模式的癌症分类算法 被引量:1

Cancer Classification Algorithm Based on Improved Emerging Pattern
下载PDF
导出
摘要 针对提取显现模式时在小样本情况下频率近似于概率的缺陷,在衡量分类信息能力熵的计算中引入贝叶斯方法估计概率P(Ci,Sj),提高熵的可靠度,在此基础上提取癌症表达中的增强显现模式,提出2种基于增强显现模式的癌症分类算法。在急性白血病数据集上进行实验,结果表明,该算法能提高癌症检测的正确率。 For the defect of frequency similar to the probability when extracting Emerging Pattern(EP) in the case of small samples,Bayesian is introduced to evaluate the probability P(Ci,Sj) in measuring classified information capacity entropy for improving the reliability of entropy.It extracts Improved Emerging Pattern(IEP) from the cancer expression and gives two kinds of cancer classification algorithms based on IEP.Experiments are taken on the Acute Leukemia dataset and the results show the algorithm can improve the accuracy of cancer detection.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第8期30-32,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60873184) 湖南省自然科学基金资助项目(07JJ5085)
关键词 显现模式 癌症分类 基因表达模式 Emerging Pattern(EP) cancer classification gene expression pattern
  • 相关文献

参考文献6

  • 1Quackenbush J.Microarray Analysis and Tumor Classification[J].The New England Journal of Medicine,2006,354(23):2463-2472.
  • 2Cho S B,Won H H.Machine Learning in DNA Microarray Analysis for Cancer Classification[C]//Proc.of APBC'03.Adelaide,Australia:[s.n.],2003.
  • 3Conde L,Mateos A,Herrero J,et al.Unsupervised Reduction of the Dimensionality Followed by Supervised Learning with a Perceptron Improves the Classification of Conditions in DNA Microarray Gene Expression Data[C]//Proc.of Neural Networks for Signal Processing.[S.l.]:IEEE Press,2002.
  • 4Li Jinyan,Liu Huiqing,Downing J R,et al.Simple Rules Underlying Gene Expression Profiles of More than Six Subtypes of Acute Lymphoblastic Leukemia(ALL) Patients[J].Bioinformatics,2003,19(1):71-78.
  • 5Tan A H,Pan Hong.Predictive Neural Networks for Gene Expression Data Analysis[J].Neural Networks,2005,18(3):297-306.
  • 6Dong Guozhu,Li Jinyan.Mining Border Descriptions of Emerging Patterns from Dataset Pairs[J].Knowledge and Information Systems,2005,8(2):178-202.

同被引文献10

  • 1Dong Guozhu, Li Jinyan. Mining border descriptions of emerging patterns from dataset pairs[J]. Knowl- edge and Information Systems, 2005, 8: 178-202.
  • 2Fang Gang, Pandey G, Wang Wen, et al. Mining low-support discriminative patterns from dense and high-dimensional data [J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(2):279 -294.
  • 3Liu Quanzhong, Shi Peng, Hu Zhengguo, et al. A novel approach of mining strong jumping emerging patterns based on BSC tree[J]. International Journal of Systems Science, 2012, doi: 10. 1080/00207721. 2012. 724110.
  • 4Chen Xiaojun, Chen Jinhua. Emerging classification algorithms for DNA sequen patterns and ce[J]. Jour- nal of Software, 2011, 6(6): 985-992.
  • 5Gambin T, Walczak K. A new classification method using based array on the comparative genome hybridization data, concept of limited jumping terns[J]. BMC Bioinformatics, 2009, (1-10). doi: 10.1186/1471-2105-10-S1 emerging IO(S1) : S64.
  • 6Fan Hongjian, Ramamohanarao K. Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers [J]. IEEE Transactions on Knowledge and Data En- gineering, 2006, 18(6): 721- 737.
  • 7J Liu Quanzhong, Shi Peng, Hu Zhengguo. Fast al gorithms for mining strong jumping emerging pat- terns using CP-tree[J]. ICIC (Innovative Compu ring, Information and Control) Express Letters, B: Applications, 2013, 4(1) : 121-128.
  • 8Witten I, Frank E. Data mining= practical machine learning tools and techniquesEM2. 2nd Edition. San Francisco: Morgan Kaufmann, 2005.
  • 9杨君锐,黄威.基于前缀树的数据流频繁模式挖掘算法[J].华中科技大学学报(自然科学版),2010,38(7):107-110. 被引量:2
  • 10段磊,唐常杰,Guozhu Dong,杨宁,苟驰.基于显露模式的对比挖掘研究及应用进展[J].计算机应用,2012,32(2):304-308. 被引量:8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部