期刊文献+

基于特征分析的粒子群优化聚类算法 被引量:2

Particle Swarm Optimization Clustering Algorithm Based on Feature Analysis
下载PDF
导出
摘要 为提高粒子群优化聚类算法的性能,结合特征分析相关方法,提出一种新的串联聚类算法KPCA-PSO,阐述算法的基本原理和实施方案。在特征分析过程中,以一种简单有效的特征值选择方法避免手动选择特征值的繁琐过程。以人工数据和实际数据测试算法性能,实验结果表明该方法具有较好的聚类效果。 Combined with the related method of feature analysis,a new cascading clustering method named KPCA-PSO is proposed to enhance the effect of Particle Swarm Optimization(PSO) clustering algorithm.Basic principles and detailed realization of the method are illustrated.In the process of feature analysis,a simple and effective feature selection method is put forward to avoid the boring manual feature selection.The method is evaluated on artificial data and real data,and experimental results show that it gains good clustering effect.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第8期185-187,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60576033) 国家"863"计划基金资助项目(2007AA04Z423 2006AA01Z106)
关键词 特征分析 核主成分分析 粒子群优化算法 聚类 feature analysis Kernel Principal Component Analysis(KPCA) Particle Swarm Optimization(PSO) algorithm clustering
  • 相关文献

参考文献8

二级参考文献31

  • 1孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 2沈红斌,王士同,吴小俊.离群模糊核聚类算法[J].软件学报,2004,15(7):1021-1029. 被引量:37
  • 3伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 4Dave R N. Generalized Fuuzy C-shell Clustering and Detection of Circular and Elliptical Boundaries[J]. Pattern Recognition, 1992, 25(7): 639-641.
  • 5Krishnapuram R, Frigui H, Nasraui O. The Fuzzy C Quadric Shell Clustering Algorithm and the Detection of Second-degree[J]. Pattern Recognition Letters, 1993, 14(7): 545-552.
  • 6Girolami M. Mercer Kernel Based Clustering in Feature Space[J]. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
  • 7Burges C J C. Geometry and Invariance in Kernel Based Methods[A]. Advance in Kernel Methods-Support Vector Learning[C]. Cambridge: MIT Press, 1999. 89-116.
  • 8Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods[J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
  • 9Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 10Bezdek J C. Convergence Theory for Fuzzy C-Means: Counterexamples and Repaires[J]. IEEE Trans on SMC, 1987, 17(4): 873-877.

共引文献332

同被引文献20

  • 1唐贤伦,仇国庆,李银国,曹长修.基于粒子群优化和SOM网络的聚类算法研究[J].华中科技大学学报(自然科学版),2007,35(5):31-33. 被引量:9
  • 2Chen Liang-Hwa, Chang Shyang. An Adaptive Conscientious Competitive Learning Algorithm and Its Applications[J]. Pattern Recognition, 1994, 27(12): 1787-1813.
  • 3Guha S, Rastogi R, Shim K. CURE: An Efficient Clustering Algorithm for Large Databases[C] //Proc. of 1998 ACM-SIGMOD Int’l Conf. on Management of Data. Seattle, USA: ACM Press, 1998: 73-84.
  • 4Likhovidov V. Variational Approach to Unsupervised Learning Algorithms of Neural Networks[J]. Neural Networks, 1997, 10(2): 273-289.
  • 5Blake C, Keogh E, Merz C J. UCI Repository of Machine Learning Databases[D]. Irvine, USA: University of California, 1998.
  • 6Hall M, Frank E, Holmes G, et al. The WEKA Data Mining Software: An Update[J]. SIGKDD Explorations, 2009, 11(1): 10- 18.
  • 7Kerr G,Ruskin H J,Crane M.Techniques for clustering gene ex- pression data[J].Computers in Biology and Medicine,2008,38 (3):283-293.
  • 8Xu R, Donald Wunsch II. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks,2005,16(3):645-678.
  • 9Gupta N,Aggarwal S.MIB:Using mutual information for bi-elus- tering gene expression data[J].Pattern Recognition,2010,43(8): 2692-2697.
  • 10Fan H L.Discrete particle swarm optimization for TSP based on neighborhood [J]. Journal of Computational Information Sys- tems,2010,10(6):3407-3414.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部