期刊文献+

NAP序列核函数在话者识别中的应用 被引量:2

Application of NAP Sequence Kernel Function in Speaker Verification
下载PDF
导出
摘要 针对话者识别系统中特征向量不定长和交叉信道干扰等问题,提出一种基于超向量的扰动属性投影(NAP)核函数。该函数是一种新型的序列核函数,使支持向量机能在整体语音序列上分类,移除核函数空间中与话者识别无关的信道子空间信息。仿真实验结果表明,该函数可有效提高支持向量机的分类性能和话者识别系统的识别准确率。 For the sake of solving the problem of variable-length feature vectors and channel impact which existed in speaker verification,a novel kernel function based on Gaussian Mixture Model(GMM) supervector,called Nuisance Attribute Projection(NAP) mapping KL divergence linear kernel function,is proposed in this paper.This function can not only be in the interest of enabling Support Vector Machine(SVM) to classify on whole audio sequences,but also has the benefit that channel subspace,which causes variability,is removed in kernel space.By doing so,the classification performances of SVM and verification accuracy of system are improved excellently.Simulation experimental results demonstrate the effectiveness of this kernel function.
作者 邢玉娟 李明
出处 《计算机工程》 CAS CSCD 北大核心 2010年第8期194-196,共3页 Computer Engineering
关键词 扰动属性投影 高斯混合模型超向量 话者识别 支持向量机 Nuisance Attribute Projection(NAP) Gaussian Mixture Model(GMM) supervector speaker verification Support Vector Machine(SVM)
  • 相关文献

参考文献5

  • 1钱博,唐振民,李燕萍,徐利敏.基于背景噪声估计的说话人识别算法[J].计算机工程,2008,34(14):14-16. 被引量:1
  • 2Wan V,Rends S.Speaker Verification Using Sequence Discriminant Support Vector Machines[J].Speech and Audio Processing,2005,13(2):203-210.
  • 3Campbell W M,Sturim D E,Reynolds D A,et al.SVM Based Speaker Verification Using a GMM Super Vector Kernel and NAP Variability Compensation[C]//Proc.of ICASSP'06.Toulouse,France:IEEE Press,2006:97-100.
  • 4Vogt R,Sridharan S.Explicit Modeling of Session Variability for Speaker Verification[J].Computer Speech and Language,2008,22(1):17-38.
  • 5罗瑜,李涛,王丹琛,何大可.支持向量机中核函数的性能评价策略[J].计算机工程,2007,33(19):186-187. 被引量:4

二级参考文献9

  • 1包永强,赵力,邹采荣.采用归一化补偿变换的与文本无关的说话人识别[J].声学学报,2006,31(1):55-60. 被引量:13
  • 2钱博,李燕萍,唐振民,徐利敏.基于频域能量分布分析的自适应元音帧提取算法[J].电子学报,2007,35(2):279-282. 被引量:7
  • 3Vladimir N V.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 4Fisher R A. The Use of Multiple Measurements in Taxonomic Problems[J]. Annals of Eugenics, 1936, 7(2): 179-188.
  • 5Joachims T, Making Large-scale SVM Learning Practical[M]. Cambridge, UA: MIT Press, 1999,169-184.
  • 6Nadas A, Nahamoo D, Picheny M A. Speech Recognition Using Noise-adaptive Prototypes[J]. IEEE Trans. on Acoustic, Speech, Signal Process, 1989, 37(10): 1495-1503.
  • 7Tsai W H, Wang Hsin-Min. Automatic Singer Recognition of Popular Music Recording via Estimation and Modeling of Solo Vocal Signals[J]. IEEE Transactions on Audio, Speech and Language Processing, 2006, 14(1): 330-341.
  • 8Soon I Y, Koh S N. Speech Enhancement Using 2-D Fourier Transform[J]. IEEE Transactions on Speech and Audio Processing, 2003, 11(6): 717-724.
  • 9张铃.基于核函数的SVM机与三层前向神经网络的关系[J].计算机学报,2002,25(7):696-700. 被引量:54

共引文献3

同被引文献30

  • 1龙艳花,郭武,戴礼荣.用于SVM说话者确认系统的序列核[J].清华大学学报(自然科学版),2008,48(S1):688-692. 被引量:1
  • 2郭武,戴礼荣,王仁华.采用UBM更新量作为支持向量机特征的说话人确认[J].清华大学学报(自然科学版),2008,48(S1):704-707. 被引量:4
  • 3Cortes C, Vapnik V. Support Vector Networks[J]. Machine Learning, 1995, 20(3): 273-295.
  • 4Tipping M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. The Journal of Machine Learning Research, 2001, 1(6): 211-244.
  • 5Tipping M E, Faul A. Fast Marginal Likelihood Maximisation for Sparse Bayesian Models[C]//Proc. of ttle 9th InternationalWorkshop on Artificial Intelligence and Statistics. Key West, Florida, USA: [s. n.], 2003.
  • 6Keerthi S S, Linc J. Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel[J]. Neural Computation, 2003,15(7): 1667-1689.
  • 7Lin Hsuan-Tien, Lin Chih-Jen. A Study on Sigmoid Kernels fur SVM and the Training of Non-PSD Kernels by SMO-typeMethods[D]. Taipei, China: Department of Computer Science and Information Engineering, National Taiwan University, 2003.
  • 8He Xiaofei. Locality Preserving Projections[D]. Chicago, USA: University of Chicago, 2005.
  • 9Zelnik-Manor L, Perona E Self-tuning Spectral Clustering[C]// Proc. of NIPS'05. Cambridge, Massachusetts, USA: MIT Press,2005:1601-1608.
  • 10王飒,郑链.基于Fisher准则和特征聚类的特征选择[J].计算机应用,2007,27(11):2812-2813. 被引量:21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部