摘要
本文采用Magnus方法求解非线性Schrdinger方程。Schrdinger方程具有模平方守恒特性,用适当差分格式对其进行模平方守恒空间离散,转化成模平方守恒的常微分方程组,再用Magnus方法求解。数值结果表明Magnus方法能保非线性Schrdinger方程模守恒量的优越性和好的稳定性。Magnus方法可应用到其它模守恒的微分方程。
This paper applies apply the Magnus method to solve the nonlinear SchrSdinger equation. The nonlinear Schrodinger equation has the modulus conserving property. The nonlinear SchrSdinger equation is discretizated in the spacial direction by the proper difference scheme, which is transformed into the ordinary differential equations. The ordinary differential equations are solved by the Magnus method. Numerical results show that the Magnus method have the advantage of the modulus conserving property of the nonlinear SchrSdinger equation and its good stability. The Magnus method can be applied to other modulus conserving differential equations.
出处
《工程数学学报》
CSCD
北大核心
2010年第2期271-276,共6页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(10401033
10471145)
海南大学引进高层次人才科研启动费项目~~