摘要
在各向异性网格下,讨论了一类非线性双曲型积分微分方程的一个矩形非协调有限元方法逼近,给出了半离散格式下的有限元解的收敛性分析和误差估计。在精确解适当光滑的前提下,利用新的技巧和精细估计得到了其超逼近性质。同时利用插值后处理技术导出了整体超收敛结果。本文的结论表明传统有限元分析中对网格的正则性要求和对Ritz-Volterra投影的依赖不是必要的,从而进一步扩展了非协调有限元方法的应用范围。
The approximation of a rectangular nonconforming finite element method for a kind of nonlinear hyperbolic integro-differential equations is discussed under the anisotropic meshes, the con- vergence analysis and the error estimate of finite element solution are presented for the semi-discrete scheme. The superclose property is derived through the new technique and sharp estimates when the exact solution is appropriately smooth. At the same time, based on the interpolated postprocessing trick, the global superconvergence is obtained. The results of this paper show that the regular condition on the meshes and the dependence on the Ritz-Volterra projection in traditional finite element analysis axe not necessary, and thus extend the applications of nonconforming finite element methods.
出处
《工程数学学报》
CSCD
北大核心
2010年第2期277-282,共6页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(10671184
10971203)~~
关键词
双曲型积分微分方程
各向异性
非协调元
半离散
超收敛
hyperbolic integro-differential equation
anisotropic meshes
nonconforming finite element
semi-discrete
superconvergence