摘要
本文通过建立两个动力学模型,研究了HIV感染者中癌症的高发现象。我们分别研究了其平衡态的存在性及稳定性。对正平衡态还发现了Hopf分支的存在,并发现随着分支参数的变化,系统出现了周期解与混沌交替出现的现象。
Cancer remains a significant burden for HIV-infected individuals. In this paper, an ODE model and an DDE model about HIV-1 dynamics incorporating the AIDS-related cancer cells in vitro a studied. For each model, we discuss the existence, the stability properties and the biological meanings of these steady states. Also we find conditions for Hopf bifurcation of the positive steady state, leading to periodic solutions, sequences of period doubling bifurcations and appearance of chaos. Further, chaos and periodic behavior alternate.
出处
《工程数学学报》
CSCD
北大核心
2010年第2期375-379,共5页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(10701053)
the China National Grand Program on Key Infectious Disease Control(2008ZX10001-002 project 2)
the Shanghai Leading Academic Discipline Project(S30104)
the CRC-IDRC International Research Chair Program:Canada-China Program on Disease Modeling and Management