摘要
1968年,Vizing猜想,对于n阶的Δ临界图G,其独立数α(G)≤2n.利用著名的Vizing邻接引理和Fiorini不等式的证明方法,证明了如果临界图G的一个最大独立集中主顶点个数不超过1,则猜想成立,从而改进了Luo等的一个结果.
In 1968, Vizing conjectured that for any edge chromatic critical graph G of order n with maximum degree △, its independence number a(G)≤n/2. In this paper, by using Vizing adjacency lemma and the method in the proof of Fiorini inequality, it is proved that if in some maxmal independent set of G the number of major vertices is no more than one, then the conjecture is true.
出处
《徐州师范大学学报(自然科学版)》
CAS
2010年第1期15-16,27,共3页
Journal of Xuzhou Normal University(Natural Science Edition)
基金
中国矿业大学科技基金资助项目(OZK4566)
关键词
边染色
临界图
独立数
edge coloring
critical graph
independence number