期刊文献+

临界图独立数的上界 被引量:3

On the upper bound of the independence number of edge chromatic critical graphs
下载PDF
导出
摘要 1968年,Vizing猜想,对于n阶的Δ临界图G,其独立数α(G)≤2n.利用著名的Vizing邻接引理和Fiorini不等式的证明方法,证明了如果临界图G的一个最大独立集中主顶点个数不超过1,则猜想成立,从而改进了Luo等的一个结果. In 1968, Vizing conjectured that for any edge chromatic critical graph G of order n with maximum degree △, its independence number a(G)≤n/2. In this paper, by using Vizing adjacency lemma and the method in the proof of Fiorini inequality, it is proved that if in some maxmal independent set of G the number of major vertices is no more than one, then the conjecture is true.
出处 《徐州师范大学学报(自然科学版)》 CAS 2010年第1期15-16,27,共3页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 中国矿业大学科技基金资助项目(OZK4566)
关键词 边染色 临界图 独立数 edge coloring critical graph independence number
  • 相关文献

参考文献5

  • 1Vizing V G. Critical graphs with a given chromatic index[J]. Diskret Analiz, 1965 (5) :9.
  • 2Vizing V G. Some unsolved problems in graph theory[J]. Russian Math Surveys, 1968,23 (6) : 125.
  • 3Brinkmann G,Choudum S A,Griinewald S,et al. Bounds for the independence number of critical graphs[J]. Bull London Math Soc,2000,32(2) :137.
  • 4Grunewald S, Steffen E. Independent sets and 2-factors in edge-chromatic-critical graphs[J]. J Graph Theory, 2004,45 (2):113.
  • 5Luo Rong,Zhao Yue. A note on Vizing's independence number conjecture of edge chromatic critical graphs[J]. Discrete Math,2006,306(15) :1788.

同被引文献19

  • 1时文俊,张利民.图的几个变换[J].河南师范大学学报(自然科学版),2004,32(4):26-29. 被引量:3
  • 2Vizing V G.Critical Graphs with a Given Chromatic Index[J].Diskret Analiz,1965(5):9-17.
  • 3Vizing V G.Some Unsolved Problems in Graph Theory[J].Russian Math Surveys,1968(6):125-141.
  • 4Brinkmann G,Choudum S A,Grünewald S,et al.Bounds for the Independence Number of Critical Graphs[J].Bull LondonMath Soc,2000(2):137-140.
  • 5Grünewald S,Steffen E.Independent Sets and 2-factors in Edge-chromatic-critical Graphs[J].J Graph Theory,2004(2):113-118.
  • 6Luo Rong,Zhao Yue.A Note on Vizing's Independence Number Conjecture of Edge Chromatic Critical Graphs[J].DiscreteMath,2006(15):1788-1790.
  • 7Luo Rong,Zhao Yue.An Application of Vizing and Vizing-like Adjacency Lemmas to Vizing's Independence Number Conjectureof Edge Chromatic Critical Graphs[J].Discrete Math,2009(9):2925-2929.
  • 8Douglas R W.The Independence Number of an Edge-Chromatic Critical Graph[J].J Graph Theory,2010(2):98-103.
  • 9Bondy J A, Murty U S R. Graph Theory with Application [M]. London: Macmillan Press, 1976.
  • 10Yap H P. Some Topics in Graph Theory[M]. London:Cambridge University press, 1986.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部