期刊文献+

基于多特征扩展pLSA模型的场景图像分类 被引量:10

Scene classification based on a multi-feature extended pLSA model
下载PDF
导出
摘要 场景图像分类近年来受到人们的广泛关注,而基于统计模型的方法更是场景分类中的研究热点。我们提出了一种新的基于多特征融合和扩展pLSA模型的场景图像分类框架。对每幅图像首先用多尺度规则分割确定局部基元,然后提取每个局部基元的多分辨率直方图矩特征和SIFT特征,最后用扩展的概率生成模型对图像集进行建模,测试。我们的方法不仅能够很好的表示图像的语义特性而且在模型的训练阶段是无监督的。我们针对目前常用的3个数据库,做了三组对比实验,均取得了比以前的方法更好的识别结果。 Scene image classification has recently been popular.The classification methods based on statistical models have been the most important methods in scene classification.We propose a new scene image classification framework based on multi-feature and an extended pLSA model.We extract multiresolution histogram moments features and scale invariant feature transform(SIFT) features of patches of images.These patches are extracted on regular segmentations of different scales of every image.Both the features are scale invariant,so they can well describe the characteristic of image patches of different scales.At last,we use extended pLSA to model all training images.Test images are then dealt with a method called fold in.Our methods are not only unsupervised,but also can well represent semantic characteristic of images.We conduct three experiments on three often used image databases.We compare our methods with two previous baseline methods.And our methods get better results than the others.
作者 江悦 王润生
出处 《信号处理》 CSCD 北大核心 2010年第4期539-544,共6页 Journal of Signal Processing
关键词 多分辨率直方图矩特征 场景分类 概率生成模型 multiresolution histogram moments feature scene classification probability generative model
  • 相关文献

参考文献13

  • 1O. A and T. A, "Modeling the shape of the scene: a holistic representation of the spatial envelope, " International Journal in Computer Vision, vol. 42, pp. 145-175, 2001.
  • 2C. Carson, M. Thomas, S. Belongie, J. M, Hellerstein, and J. Malik, "Blobworld: a system for region-based image indexing and retrieval," in International Conference on Visual Information Systems 1999.
  • 3P. Lipson, E. Grimson, and P. Sinha. , "Configuration based scene classification and image indexing, " in IEEE Computer Society Conference on Computer Vision and Pattern Recognition. , Puerto Rico, 1997.
  • 4J. R. Smith and C. Li, "Image classification and quer ying using composite region templates, " Computer Vision and Image Understanding, vol 75, pp. 165-174, 1999.
  • 5J. Sivic and A. Zisserman, "Video Google: A Text Retrieval Approach to Object Matching in Videos," in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003.
  • 6T. Hofmann , " Unsupervised Learning by Probabilistic Latent Semantic Analysis," Machine Learning,, vol. 42, pp. 177-196, 2001.
  • 7D. G. Lowe, " Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
  • 8A. Bosch, A. Zisserman, and X. Munoz, "Scene classification using a hybrid generative/discriminative approach," IEEE Trans Pattern Anal Mach Intell, vol. 30, pp. 712-727, Apr 2008.
  • 9L Fei-Fei, R. Fergus, and P. Perona, "A Bayesian hierarchical model for learning natural scene categories," in CVPR, Washington D.C. USA, 2005.
  • 10T. Hofmann, J. Puzieha, and M. I. Jordan, "Unsupervised Learning from dyadic data, " Advances in Neural Information Processing Systems, vol. 11, 1999.

同被引文献106

引证文献10

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部