期刊文献+

局部对称Lorentz空间中的类空超曲面

Space-like hypersurfaces in locally symmetric Lorentz space
下载PDF
导出
摘要 研究了局部对称Lorentz空间中具有常平均曲率或常数量曲率的类空超曲面.利用丘成桐的广义极大值原理和自伴随算子得到了两个重要的内蕴刚性定理,其分别推广了欧阳崇祯和刘新民的主要结果. This paper studies the space-like hypersurfaces with constant mean curvature or constant scalar curvature in locally symmetric Lorentz space.Two important rigidity theorems are geted by making use of the generalized maximal principle and self-adjoint differential operator of Yau.Two important results of the related documents are generalized.
作者 曹娟娟
机构地区 西北大学数学系
出处 《纯粹数学与应用数学》 CSCD 2010年第2期325-334,共10页 Pure and Applied Mathematics
基金 陕西省自然科学基金(SJ08A31) 陕西省教育厅自然科学基金(2008JK484)
关键词 局部对称Lorentz空间 平均曲率 数量曲率 类空超曲面 locally symmetric Lorentz space mean curvature scalar curvature space-like hypersurfaces
  • 相关文献

参考文献10

  • 1Akutagawa K.On space-like hypersurfaces with constant mean curvature in the de Sitter space[J].Math.Z.,1987,196:13-19.
  • 2Ramanathan J.Complete space-like hypersurfaces of constant mean curvature in the de Sitter spaces[J].Zndiana Univ.Math.,1987,36:349-359.
  • 3Ou Yang Chong-zhen,Li Zhen Qi.Complete space-like hypersurfaces with constant mean curvature in de Sitter spaces[J].Math.J.,2000,45-49.
  • 4Liu Xi min.Complete space-like hypersurfaces with constant scalar curvature[J].Manuscripta Math,2001,105(3):367-377.
  • 5Alencar H,Carmo M p do.Hupersurfaces with constant mean curvature in spheres[J].Proc.Amer.Math.SOC.,1994,120:1223-1229.
  • 6Yan S T.Harmonic functions on complete Riemannian manifolds[J].Comm,pure and Appl.Math.,1975,28:201-241.
  • 7Omori H.Isometric immersion of Riemmaian manifolds[J].J.Math.Soc.Japan.,1967,19:205-214.
  • 8Abe N,Koike N,Yamaguuchi S.rongruence theorems for proper smai-Riemannian hypersurfaces in a real space form[J].Yokohama Math.J.1987,35:123-136.
  • 9Alidir Brasil J,Gervasio Colares A,Oscar Palmas.A gap theorem for complete constant scalar curvature hypersurfaces in the de Sitter space[J].J.Gemo.phys.,2001,37:237-250.
  • 10Cheng S Y.Yau S T.hypersurfaces with constant scalar curvature[J].Math.Ann.,1997,225:195-204.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部