期刊文献+

不确定网络及其度分布的马氏链数值分析

Uncertainty Networks and Analysis of Degree Distribution via Markov Chain-based Numerical Method
下载PDF
导出
摘要 采用不确定理论的方法,基于BA模型及演化网络模型,通过在择优概率的基础上加入不确定变量,提出一个能较好描述现实复杂网络特征的不确定演化网络模型。针对该模型,运用马氏链数值方法,根据连线增加和删除数目的不同关系导出相应的度分布和幂率指数的表达式。理论、数值分析和模拟结果表明:该模型能自组织演化成无标度网络,度分布遵循幂率分布,与现实中的一些网络相吻合,由于不确定性的普遍性,该模型具有一般性。 The evolving networks which use uncertainty theory is considered. Based on BA model, we investigate the uncertainty scale-free network which is better to describe the reality networks. Used Markov chain-based numerical method, the degree distribution and degree exponent are obtained based on the different relationships between the adding and deleting links. It is showed that the model can evolve into scale-free network by self-organized and is identical with some real networks. The model is suited in a general setting through analyzing degree distribution.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2010年第3期285-288,共4页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(90612003) 山东省科技发展计划(2008GG30009008) 山东省自然科学基金(Y2008A29)
关键词 BA模型 不确定性理论 度分布 无标度网络 马氏链数值分析方法 BA model uncertainty theory degree distribution scale-free networks Markov chain-based numerical method
  • 相关文献

参考文献11

  • 1BARAB(A) SI A L,ALBERT R,JEONG H.Mean-field theory for scale-free random networks[J].Physica A,1999,272:173-187.
  • 2LIU Zonghua,LAI Yingchen,YE Nong,et al.Connective distribution and attack tolerance of general networks with both preferential and random attachments[J].Phys Lett A,2002,303:337-344.
  • 3DOROGOVTSEV S N,MENDES J F F,SAMUKHIN A N.Structure of growth networks with preferential linking[J].Phys Rev Lett,2000,85:4633-4636.
  • 4KRAPIVSKY P L,REDNER S,LEYYRAZ F.Connectivity of growing random networks[J].Phys Rev Lett,2000,85:4629-4632.
  • 5SHI Dinghua,CHEN Qinghua,LIU Liming.Markov chain-based numerical method for degree distribution of growing networks[J].Phys Rev,2005,E71:036140.
  • 6LIU Baoding.Uncertainty theory[M].Beijing:UTLAB,2009:1-15.
  • 7BARAB(A) SI A L,ALBERT R.Topology of evolving networks:local events and universality[J].Phys Rev Lett,2000,85(24):5234-5237.
  • 8KLEMM K,EGUILUZ V M.Growing scale-free networks with small-world behavior[J].Phys Rev,2002,E65:057102.
  • 9SHI D,LIU L,ZHU S X,et al.Degree distribution of evolving networks[J].Europhys Lett,2006,76(4):731-737.
  • 10FALOUTSOS M,FALOUTSOS P,FSLOUTSOS C.On power-law relationships of the Internet topology[J].ACM SIGCOMM Computer Communication Review,1999,29(4):251-262.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部