期刊文献+

基于保守自适应K-最近邻算法的维数约简

Dimensional Reduction Based on Conservative Adaptive K-Nearest Neighbor Algorithm
下载PDF
导出
摘要 针对传统的k-最近邻算法存在不能根据样本密度进行自适应选择近邻点数目的缺陷,提出一种改进型的保守自适应k-最近邻算法。该算法首先对每个样本点选择m个近邻点,m取一个比较小的正整数,以保证不存在某个样本点无近邻点;其次把每个样本点的第m+1个最小的欧式距离作为最小值,最小值的α倍作为寻找近邻点的阈值;最后应用经典MDS算法计算。swiss-roll数据集上的降维实验结果表明,降维后的数据能很好地保持原有数据的邻域特性,能有效快捷地寻找近邻点。 An improved conservative and adaptive k-nearest neighbor algorithm is brought forward because the traditional k-nearest neighbor algorithm has a defect that can not select neighbor points adaptively based on the sample density.In this algorithm,m neighbor points,m a relatively small positive integer,are selected for each sample point to ensure that every sample point has its neighbor points,and the No.m+1 smallest Euclidean distance is taken as the minimum value for each sample point and α times of the minimum value as the threshold for searching neighbor points,then the classical MDS algorithm is used to calculate.The dimensional reduction experimental results on swiss-roll dataset show that it is an efficient way to find neighbor points and keep the neighborhood characteristics of the original data well.
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2010年第2期159-162,共4页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金(60573065) 山东省自然科学基金(Y2007G33)
关键词 保守自适应k-最近邻 维数约简 MDS算法 swiss-roll数据集 流形学习 conservative adaptive k-nearest neighbor dimensional reduction MDS algorithm swiss-roll dataset manifold learning
  • 相关文献

参考文献10

  • 1王钰,周志华.机器学习及应用[M].北京:清华大学出版社,2006.
  • 2TENENBAUM J B,SLVA DE V.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(12):2319-2323.
  • 3ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290:2323-2326.
  • 4SAUL L K,ROWEIS S T.Unsupervised learning of low dimensional manifolds[J].Journal of Machine Learning Research,2003,4(6):119-155.
  • 5ZHANG Zhenyue,ZHAO Hongyuan.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal of Scientific Computing,2005,26(1):313-338.
  • 6ZHAO Deli.Formulating LLE using alignment technique[J].Pattern Recognition,2006,39(11):2233-2235.
  • 7杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 8吴晓婷,马玉梅.高维数据流形的低维嵌入问题研究[J].大连民族学院学报,2008,10(5):441-443. 被引量:1
  • 9张春燕,汤进,赵海峰,罗斌.基于MDS的统计形状聚类[J].计算机技术与发展,2007,17(3):58-61. 被引量:4
  • 10贾志刚,赵建立,张凤霞.广义对称矩阵的特征问题及其奇异值分解[J].山东大学学报(理学版),2007,42(12):15-18. 被引量:2

二级参考文献34

  • 1赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 2[1]TENENBAUM J B,DE SILVA V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290 (12):2319-2323.
  • 3[2]DONOHO D L,GRIMES C.When does ISOMAP recover the natural parameterization of families of articulated images[R].Technical Report,Department of Statistics,Stanford University,2002.
  • 4[3]ROWELS S T,SAUL L K.Nonlinear dimensionality analysis by locally linear embedding[J].Science,2000,290(12):2323 -2326.
  • 5[5]ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal of Scientific Computing,2005,26 (1):313-338.
  • 6Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269.
  • 7Donoho DL, Grimes C. Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences of the United States of American, 2003,100(10):5591-5596.
  • 8.[EB/OL].http://www.cse.msu.edu/~lawhiu/manifold/,.
  • 9Tenenbaum J, Silva VD, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(5500):2319-2323.
  • 10Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000290(5500):2323-2326.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部